DOI QR코드

DOI QR Code

Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil

  • Long, Dongyan (Institute of Environmental Science and Technology, Zhejiang University) ;
  • Tang, Xianjin (Institute of Environmental Science and Technology, Zhejiang University) ;
  • Cai, Kuan (Global Environmental Technology Co., Ltd.) ;
  • Chen, Guangcun (Institute of Environmental Science and Technology, Zhejiang University) ;
  • Shen, Chaofeng (Institute of Environmental Science and Technology, Zhejiang University) ;
  • Shi, Jiyan (Institute of Environmental Science and Technology, Zhejiang University) ;
  • Chen, Linggui (Institute of Environmental Science and Technology, Zhejiang University) ;
  • Chen, Yingxu (Institute of Environmental Science and Technology, Zhejiang University)
  • Received : 2013.01.03
  • Accepted : 2013.04.03
  • Published : 2013.08.28

Abstract

The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.

Keywords

References

  1. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A. 2006. Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188: 3371-3381. https://doi.org/10.1128/JB.188.9.3371-3381.2006
  2. Al Hasin A, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PHE. 2010. Remediation of chromium(VI) by a methane-oxidizing bacterium. Environ. Sci. Technol. 44: 400-405. https://doi.org/10.1021/es901723c
  3. Beller HR, Han RY, Geller JT, Yang L, Brodie EL, Chakraborty R, et al. 2010. Physiological and transcriptional studies of Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived Pseudomonad. Environ. Sci. Technol. 44: 7491-7497. https://doi.org/10.1021/es101152r
  4. Boddu VM, Abburi K, Talbott JL, Smith ED. 2003. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ. Sci. Technol. 37: 4449-4456. https://doi.org/10.1021/es021013a
  5. Camargo FAO, Bento FM, Okeke BC, Frankenberger WT. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 32: 1228-1233. https://doi.org/10.2134/jeq2003.1228
  6. Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, et al. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x
  7. Chai LY, Huang SH, Yang ZH, Peng B, Huang Y, Chen YH. 2009. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. J. Hazard. Mater. 167: 516-522. https://doi.org/10.1016/j.jhazmat.2009.01.030
  8. Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M. 2002. Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 60: 352-360. https://doi.org/10.1007/s00253-002-1091-8
  9. Chen JM, Hao OJ. 1998. Microbial chromium(VI) reduction. Crit. Rev. Environ. Sci. Tecnol. 28: 219-251. https://doi.org/10.1080/10643389891254214
  10. Chen XC, Hu SP, Shen CF, Dou CM, Shi JY, Chen YX. 2009. Interaction of Pseudomonas putida CZ1 with c lays and ability of the composite to immobilize copper and zinc from solution. Bioresour. Technol. 100: 330-337. https://doi.org/10.1016/j.biortech.2008.04.051
  11. Chen XC, Shi JY, Chen YX, Xu XH, Xu SY, Wang YP. 2006. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316. https://doi.org/10.1139/w05-157
  12. Cheng Y J, Y an FB, Huang F, Chu WS, P an DM, Chen Z , et al. 2010. Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environ. Sci. Technol. 44: 6357-6363. https://doi.org/10.1021/es100198v
  13. Cheung KH, Gu JD. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int. Biodeterior. Biodegrad. 59: 8-15. https://doi.org/10.1016/j.ibiod.2006.05.002
  14. Desai C, Jain K, Madamwar D. 2008. Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. 99: 6059-6069. https://doi.org/10.1016/j.biortech.2007.12.046
  15. Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yimaz BC, Mazmanci MA. 2011. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ. Sci. Technol. 45: 2278-2285. https://doi.org/10.1021/es102095t
  16. Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K. 2006. Reduction of Cr(VI) by a Bacillus sp. Biotechnol. Lett. 28: 247-252. https://doi.org/10.1007/s10529-005-5526-z
  17. Francisco R, Alpoim MC, Morais PV. 2002. Diversity of chromium-resistant and -reducing bacteria in a chromiumcontaminated activated sludge. J. Appl. Microbiol. 92: 837-843. https://doi.org/10.1046/j.1365-2672.2002.01591.x
  18. Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I. 2006. Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 65: 644-650. https://doi.org/10.1016/j.chemosphere.2006.01.069
  19. Garavaglia L, Cerdeira SB, Vullo DL. 2010. Chromium(VI) biotransformation by $\beta$- and $\gamma$-Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes. J. Hazard. Mater. 175: 104-110. https://doi.org/10.1016/j.jhazmat.2009.09.134
  20. Guha H, Jayachandran K, Maurrasse F. 2001. Kinetics of chromium(VI) reduction by a type strain Shewanella alga under different growth conditions. Environ. Pollut. 115: 209-218. https://doi.org/10.1016/S0269-7491(01)00108-7
  21. Guha H, Jayachandran K, Maurrasse F. 2003. Microbiological reduction of chromium(VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 52: 175-183. https://doi.org/10.1016/S0045-6535(03)00104-8
  22. He MY, Li XY, Liu HL, Miller SJ, Wang GJ, Rensing C. 2011. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J. Hazard. Mater. 185: 682-688. https://doi.org/10.1016/j.jhazmat.2010.09.072
  23. Kilic NK, Stensballe A, Otzen DE, Donmez G. 2010. Proteomic changes in response to chromium(VI) toxicity in Pseudomonas aeruginosa. Bioresour. Technol. 101: 2134-2140. https://doi.org/10.1016/j.biortech.2009.11.008
  24. Konovalova VV, Dmytrenko GM, Nigmatullin RR, Bryk MT, Gvozdyak PI. 2003. Chromium(VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme Microb. Technol. 33: 899-907. https://doi.org/10.1016/S0141-0229(03)00204-7
  25. Li B, Pan DM, Zheng JS, Cheng Y J, Ma XY, Huang F, et al. 2008. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24: 9630-9635. https://doi.org/10.1021/la801851h
  26. Losi ME, Amrhein C, Frankenberger WT. 1994. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 136: 91-121.
  27. Keyhan M, Ackerley DF, Matin A. 2003. Targets of improvement in bacterial chromate bioremediation. In Pellei M, Porta A (eds.). Proceedings of the Second International Conference on Remediation of Contaminated Sediments (Venice, Italy, 30 Sep-3 Oct 2003). Battlle Press, Columbus, OH.
  28. Masood F, Malik A. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull. Environ. Contam. Toxicol. 86: 114-119. https://doi.org/10.1007/s00128-010-0181-z
  29. Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J. 2004. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur. J. Biochem. 271: 553-562. https://doi.org/10.1046/j.1432-1033.2003.03957.x
  30. McLean J, Beveridge TJ. 2001. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67: 1076-1084. https://doi.org/10.1128/AEM.67.3.1076-1084.2001
  31. Megharaj M, Avudainayagam S, Naidu R. 2003. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 47: 51-54. https://doi.org/10.1007/s00284-002-3889-0
  32. Morales-Barrera L, Guillen-Jimenez FD, Ortiz-Moreno A, Villegas-Garrido TL, Sandoval-Cabrera A, Hernandez-Rodriguez CH, et al. 2008. Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential. Biochem. Eng. J. 40: 284-292. https://doi.org/10.1016/j.bej.2007.12.014
  33. Morel MA, Ubalde MC, Brana V, Castro-Sowinski S. 2011. Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch. Microbiol. 193: 63-68. https://doi.org/10.1007/s00203-010-0632-2
  34. Morokutti A, Lyskowski A, Sollner S, Pointner E, Fitzpatrick TB, Kratky C, et al. 2005. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochemistry 44: 13724-13733. https://doi.org/10.1021/bi0510835
  35. Myers CR, Carstens BP, Antholine WE, Myers JM. 2000. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88: 98-106.
  36. Pal A, Dutta S, Paul AK. 2005. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. 51: 327-330. https://doi.org/10.1007/s00284-005-0048-4
  37. Palmer CD, Wittbrodt PR. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92: 25-40. https://doi.org/10.1289/ehp.919225
  38. Pattanapipitpaisal P, Brown NL, Macaskie LE. 2001. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl. Microbiol. Biotechnol. 57: 257-261. https://doi.org/10.1007/s002530100758
  39. Pei QH, Shahir S, Raj ASS, Zakaria ZA, Ahmad WA. 2 009. Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J. Microbiol. Biotechnol. 25: 1085-1093. https://doi.org/10.1007/s11274-009-9989-2
  40. Ramirez-Ramirez R, Calvo-Mendez C, Avila-Rodriguez M, Lappe P, Ulloa M, Vazquez-Juarez R, et al. 2004. Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie Van Leeuwenhoek 85: 63-68. https://doi.org/10.1023/B:ANTO.0000020151.22858.7f
  41. Rehman A, Zahoor A, Muneer B, Hasnain S. 2008. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater. Bull. Environ. Contam. Toxicol. 81: 25-29. https://doi.org/10.1007/s00128-008-9442-5
  42. Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS. 2002. Why stainless steel corrodes. Nature 415: 770-774. https://doi.org/10.1038/415770a
  43. Shakoori AR, Makhdoom M, Haq RU. 2000. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 53: 348-351. https://doi.org/10.1007/s002530050033
  44. Shen H, Wang YT. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia-coli ATCC- 33456. Appl. Environ. Microbiol. 59: 3771-3777.
  45. Srivastava J, Chandra H, Tripathi K, Naraian R, Sahu RK. 2008. Removal of chromium(VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent. J. Basic Microbiol. 48: 135-139. https://doi.org/10.1002/jobm.200700291
  46. Stasinakis AS, Thomaidis NS, Mamais D, Karivali M, Lekkas TD. 2003. Chromium species behavior in the activated sludge process. Chemosphere 52: 1059-1067. https://doi.org/10.1016/S0045-6535(03)00309-6
  47. Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV. 2005. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ. Sci. Technol. 39: 3671-3678. https://doi.org/10.1021/es048468f
  48. Sundararajan M, Campbell AJ, Hillier IH. 2011. How do enzymes reduce metals? The mechanism of the reduction of Cr(VI) in chromate by cytochrome c(7) proteins proposed from DFT calculations. Faraday Discuss. 148: 195-205. https://doi.org/10.1039/c003830j
  49. Tang XJ, Shen CF, Shi DZ, Cheema SA, Khan MI, Zhang CK, et al. 2010. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China. J. Hazard. Mater. 173: 653-660. https://doi.org/10.1016/j.jhazmat.2009.08.134
  50. Thacker U, Parikh R, Shouche Y, Madamwar D. 2006. Hexavalent chromium reduction by Providencia sp. Process Biochem. 41: 1332-1337. https://doi.org/10.1016/j.procbio.2006.01.006
  51. Thacker U, Parikh R, Shouche Y, Madamwar D. 2007. Reduction of chromate by cell-free extract of Brucella sp.isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98: 1541-1547. https://doi.org/10.1016/j.biortech.2006.06.011
  52. Thakur IS, Srivastava S. 2006. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol. Biochem. 38: 1904-1911. https://doi.org/10.1016/j.soilbio.2005.12.016
  53. Urone PF. 1955. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Anal. Chem. 27: 1354-1355. https://doi.org/10.1021/ac60104a048
  54. Viti C, Pace A, Giovannetti L. 2003. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr. Microbiol. 46: 1-5. https://doi.org/10.1007/s00284-002-3800-z
  55. Wang GJ, He MY, Li XY, Liu HL, Miller SJ, Rensing C. 2011. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J. Hazard. Mater. 185: 682-688. https://doi.org/10.1016/j.jhazmat.2010.09.072
  56. Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H. 1989. Isolation and characterization of an Enterobacter-cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbi. 55: 1665-1669.
  57. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. 2007. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J. Hazard. Mater. 146: 30-38. https://doi.org/10.1016/j.jhazmat.2006.11.052

Cited by

  1. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization vol.30, pp.10, 2013, https://doi.org/10.1007/s11274-014-1697-x
  2. Enhancement of Phenol Biodegradation by Pseudochrobactrum sp. through Ultraviolet-Induced Mutation vol.16, pp.4, 2013, https://doi.org/10.3390/ijms16047320
  3. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis vol.31, pp.11, 2015, https://doi.org/10.1007/s11274-015-1928-9
  4. Isolation and Identification of Chromium (VI)-Resistant Bacteria From Soltan Abad River Sediments (Shiraz-Iran) vol.8, pp.1, 2013, https://doi.org/10.17795/jjhs-33576
  5. Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis vol.24, pp.6, 2013, https://doi.org/10.1007/s11356-016-8356-8
  6. Characterization of Penicillium oxalicum SL2 isolated from indoor air and its application to the removal of hexavalent chromium vol.13, pp.1, 2013, https://doi.org/10.1371/journal.pone.0191484
  7. Potential Application of Saccharomyces cerevisiae and Rhizobium Immobilized in Multi Walled Carbon Nanotubes to Adsorb Hexavalent Chromium vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-018-28067-9
  8. Recognition of a New Cr(VI)-Reducing Strain and Study of the Potential Capacity for Reduction of Cr(VI) of the Strain vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/5135017
  9. The Role of Microbial Mats in the Removal of Hexavalent Chromium and Associated Shifts in Their Bacterial Community Composition vol.11, pp.None, 2013, https://doi.org/10.3389/fmicb.2020.00012
  10. Cr(VI) removal by Penicillium oxalicum SL2: Reduction with acidic metabolites and form transformation in the mycelium vol.253, pp.None, 2020, https://doi.org/10.1016/j.chemosphere.2020.126731