DOI QR코드

DOI QR Code

Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin

  • Lee, Mee Youn (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Park, Hye Min (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Son, Gun Hee (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Choong Hwan (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2013.12.31
  • Accepted : 2013.04.08
  • Published : 2013.07.28

Abstract

This work aimed to classify Aspergillus (8 species, 28 strains) by using a secondary metabolite profile-based chemotaxonomic classification technique. Secondary metabolites were analyzed by liquid chromatography ion-trap mass spectrometry (LC-IT-MS) and multivariate statistical analysis. Most strains were generally well separated from each section. A. lentulus was discriminated from the other seven species (A. fumigatus, A. fennelliae, A. niger, A. kawachii, A. flavus, A. oryzae, and A. sojae) with partial least-squares discriminate analysis (PLS-DA) with five discriminate metabolites, including 4,6-dihydroxymellein, fumigatin, 5,8-dihydroxy-9-octadecenoic acid, cyclopiazonic acid, and neosartorin. Among them, neosartorin was identified as an A. lentulus-specific compound that showed anticancer activity, as well as antibacterial effects on Staphylococcus epidermidis. This study showed that metabolite-based chemotaxonomic classification is an effective tool for the classification of Aspergillus spp. with species-specific activity.

Keywords

References

  1. Arora DK. 2003. Fungal Biotechnology in Agricultural, Food, and Environmental Applications, pp. 51-53. Marcel Dekker, Inc., New York, USA.
  2. Arora DS, Chandra P. 2011. Antioxidant activity of Aspergillus fumigatus. ISRN Pharmacol. 2011: 1-11.
  3. Avantaggiato G, Solfrizzo M, Tosi L, Zazzerini A, Fanizzi FP, Visconti A. 1999. Isolation and characterization of phytotoxic compounds produced by Phomopsis helianthi. Nat. Toxins 7: 119-127. https://doi.org/10.1002/(SICI)1522-7189(199905/06)7:3<119::AID-NT49>3.0.CO;2-P
  4. Bennett JW, Klich M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16: 497-516. https://doi.org/10.1128/CMR.16.3.497-516.2003
  5. Carolis DE, Posteraro B, Lass-Florl C, Vella A, Florio AR, Torelli R, et al. 2012. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrixassisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 18: 475-484. https://doi.org/10.1111/j.1469-0691.2011.03599.x
  6. Chang PK, Ehrlich KC, Fujii I. 2009. Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins 1: 74-99. https://doi.org/10.3390/toxins1020074
  7. Cvetnic Z, Pepeljnjak S. 1998. Production of cyclopiazonic acid by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavu. Nahrung 42: 321-323. https://doi.org/10.1002/(SICI)1521-3803(199810)42:05<321::AID-FOOD321>3.3.CO;2-8
  8. Dunn WB, Ellis DI. 2005. Metabolomics: current analytical platforms and methodologies. Trends Anal. Chem. 24: 285-294. https://doi.org/10.1016/j.trac.2004.11.021
  9. Elaasser MM, Abdel-Aziz MM, EI-Kassas RA. 2011. Antioxidant, antimicrobial, antiviral and antitumor activities of pyranone derivative obtained from Aspergillus candidus. J. Microbiol. Biotechnol. Res. 1: 5-17.
  10. Elias BC, Said S, de Albuquerque S, Pupo MT. 2006. The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck. Microbiol. Res. 161: 273-280. https://doi.org/10.1016/j.micres.2005.10.003
  11. Espinel-Ingroff A, Arthington-Skaggs B, Iqbal N, Ellis D, Pfaller MA, Messer S, et al. 2007. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J. Clin. Microbiol. 45: 1811-1820. https://doi.org/10.1128/JCM.00134-07
  12. Frisvad JC, Rank C, Nielsen NF, Larsen TO. 2009. Metabolomics of Aspergillus fumigatus. Med. Mycol. 47: 53-71. https://doi.org/10.1080/13693780802307720
  13. Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. 2007. The current status of species recognition and identification in Aspergillus. Stud. Mycol. 59: 1-10. https://doi.org/10.3114/sim.2007.59.01
  14. Goker H, Ozden S, Yildiz S, Boykin DW. 2005. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem. 40: 1062-1069. https://doi.org/10.1016/j.ejmech.2005.05.002
  15. Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316-1329. https://doi.org/10.3852/mycologia.97.6.1316
  16. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2: 23-28. https://doi.org/10.1128/AAC.2.1.23
  17. Kang DJ, Son GH, Park HM, Kim JY, Choi JN, Kim HY, et al. 2013. Culture condition-dependent metabolite profiling of Aspergillus fumigatus with antifungal activity. Fungal Biol. 117: 211-219. https://doi.org/10.1016/j.funbio.2013.01.009
  18. Kang DJ, Kim JY, Choi JN, Liu KH, Lee CH. 2011. Chemotaxonomy of Trichoderma spp. using mass spectrometrybased metabolite profiling. J. Microbiol. Biotechnol. 21: 5-13. https://doi.org/10.4014/jmb.1008.08018
  19. Kim HY, Park HM, Lee CH. 2012. Mass spectrometry-based chemotaxonomic classification of Penicillium species (P. echinulatum, P. expansum, P. solitum, and P. oxalicum) and its correlation with antioxidant activity. J. Microbiol. Methods 90: 327-335. https://doi.org/10.1016/j.mimet.2012.06.006
  20. Kurobane I, Iwahashi S, Fukuda A. 1987. Cytostatic activity of naturally isolated isomers of secalonic acids and their chemically rearranged dimers. Drugs Exp. Clin. Res. 13: 339-344.
  21. Lamrani K, Lakhtar H, Ismaili-Alaoui M, Ettalibi M, Boiron P, Augur C, et al. 2008. Production of Fumagillin by Aspergillus fumigatus isolated from traditional trituration units, "Maasra," in Morocco. Micol. Apl. Int. 20: 35-41.
  22. Larsen TO, Smedsgaard J, Nielsen KF, Hansen MA, Samson RA, Frisvad JC. 2007. Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Med. Mycol. 45: 225-232. https://doi.org/10.1080/13693780601185939
  23. Lommen A. 2009. Metalign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81: 3079-3086. https://doi.org/10.1021/ac900036d
  24. Losito I, Monaci L, Aresta A, Zambonin CG. 2002. LC-ion trap electrospray MS-MS for the determination of cyclopiazonic acid in milk samples. Analyst 127: 499-502. https://doi.org/10.1039/b200394p
  25. Mabe S, Eller J, Champney WS. 2004. Structure-activity relationships for three macrolide antibiotics in Haemophilus influenzae. Curr. Microbiol. 49: 248-254. https://doi.org/10.1007/s00284-004-4312-9
  26. Machida M, Gomi K. 2010. Aspergillus: Molecular Biology and Genomics, pp. 8-9. Caister Academic Press, Norfolk, UK.
  27. Mazur P, Nakanishi K, El-Zayat AAE, Champe SP. 1991. Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J. Chem. Soc. Chem. Commun. 20: 1486-1487.
  28. Polizzi V, Adams A, Malysheva SV, Saeger SD, Peteghem CV, Moretti A, et al. 2012. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol. 116: 941-953. https://doi.org/10.1016/j.funbio.2012.06.001
  29. Proksa B, Uhrin D, Liptaj T, Sturdikova M. 1998. Neosartorin, an ergochrome biosynthesized by Neosatorya fischeri. Phytochemistry 48: 1161-1164. https://doi.org/10.1016/S0031-9422(98)00169-1
  30. Rai M, Kovics G. 2010. Progress in Mycology, pp. 95-97. Scientific Publishers, Jodhpur, India.
  31. Ramos HP, Said S. 2011. Modulation of biological activities produced by an endophytic fungus under different culture conditions. Adv. Biosci. Biotechnol. 2: 443-449. https://doi.org/10.4236/abb.2011.26065
  32. Rank C, Klejnstrup ML, Petersen LM, Kildgaard S, Frisvad JC, Gotfredsen CH, et al. 2012. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites 2: 39-56. https://doi.org/10.3390/metabo2010039
  33. Ren H, Tian L, Gu Q, Zhu W. 2006. Secalonic acid D; a cytotoxic constituent from marine lichen-derived fungus Gliocladium sp. T31. Arch. Pharm. Res. 29: 59-63. https://doi.org/10.1007/BF02977469
  34. Rodrigues P, Santos C, Venancio A, Lima N. 2011. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDITOF-ICMS and molecular approaches. J. Appl. Microbiol. 111: 877-892. https://doi.org/10.1111/j.1365-2672.2011.05116.x
  35. Siegel I, Liu TL, Yaghoubzadeh E, Keskey TS, Gleicher N. 1987. Cytotoxic effects of free fatty acids on ascites tumor cells. J. Natl. Cancer Inst. 78: 271-277.
  36. Sun HF, Li XM, Meng L, Cui CM, Gao SS, Li CS, et al. 2012. Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48. J. Nat. Prod. 75: 148-152. https://doi.org/10.1021/np2006742
  37. Turner NW, Subrahmanyam S, Piletsky SA. 2009. Analytical methods for determination of mycotoxins: a review. Anal. Chim. Acta 632: 168-180. https://doi.org/10.1016/j.aca.2008.11.010
  38. Varga J, Rigo K, Toth B, Teren J, Jozakiewicz Z. 2003. Evolutionary relationships among Aspergillus species producing economically important mycotoxins. Food Technol. Biotechnol. 41: 29-36.
  39. Wadman MW, de Vries RP, Kalkhove SIC, Vel-dink GA, Vliegenthart JFG. 2009. Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger. BMC Microbiol. 9: 59. https://doi.org/10.1186/1471-2180-9-59
  40. Waksman SA, Horning ES, Spencer EL. 1943. Two antagonistic fungi, Aspergillus fumigatus and Aspergillus clavatus, and their antibiotic substances. J. Bacteriol. 45: 233-248.
  41. Wang Y, Zheng J, Liu P, Wang W, Zhu W. 2011. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs 9: 1368-1378. https://doi.org/10.3390/md9081368
  42. Yen GC, Chang YC, Su SW. 2003. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 83: 49-54. https://doi.org/10.1016/S0308-8146(03)00035-9
  43. Zain ME, Razak AA, EI-Sheikh HH, Soliman HG, Khalil AM. 2009. Influence of growth medium on diagnostic characters of Aspergillus and Penicillium species. Afr. J. Microbiol. Res. 3: 280-286.
  44. Zeng RS, Luo SM, Shi YH, Shi MB, Tu CY. 2001. Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron. J. 93: 72-79. https://doi.org/10.2134/agronj2001.93172x

Cited by

  1. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.01485
  2. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation vol.21, pp.6, 2016, https://doi.org/10.3390/molecules21060773
  3. Comprehensive Secondary Metabolite Profiling Toward Delineating the Solid and Submerged-State Fermentation of Aspergillus oryzae KCCM 12698 vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.01076
  4. The airborne mycobiome and associations with mycotoxins and inflammatory markers in the Norwegian grain industry vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-88252-1