DOI QR코드

DOI QR Code

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Received : 2012.09.04
  • Accepted : 2013.03.15
  • Published : 2013.07.28

Abstract

An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

Keywords

References

  1. Abou-Hachem M, Nordberg Karlsson E, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, et al. 2000. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: Cloning, expression and binding studies. Biochem. J. 345: 53-60. https://doi.org/10.1042/0264-6021:3450053
  2. Abou-Hachem M, Karlsson EM, Simpson PJ, Linse S, Sellers P, Williamson MP, et al. 2002. Calcium binding and thermostability of carbohydrate binding module CBM-2 of Xyn10A from Rhodothermus marinus. Biochemistry 41: 5720-5729. https://doi.org/10.1021/bi012094a
  3. Allouch J, Jam M, Helbert W, Barbeyrons T, Kloareg B, Henrissat B, et al. 2003. The three-dimensional structures of two ${\beta}$-agarase. J. Biol. Chem. 278: 47171-47180. https://doi.org/10.1074/jbc.M308313200
  4. Araki T, Hayakawa M, Zhang L, Karita S, Morishita T. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260-265.
  5. Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, et al. 1998. Pseudomonas cellulosebinding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331: 775-781.
  6. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, et al. 1998. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem. 273: 32187-32199. https://doi.org/10.1074/jbc.273.48.32187
  8. Dong J, Hashikawa S, Konishi T, Tamaru Y, Araki T. 2006. Cloning of the novel gene encoding beta-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl. Environ. Microbiol. 72: 6399-6401. https://doi.org/10.1128/AEM.00935-06
  9. Dong J, Tamaru Y, Araki T. 2007. A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl. Microbiol. Biotechnol. 74: 1248-1255. https://doi.org/10.1007/s00253-006-0781-z
  10. Duckworth M, Yaphe W. 1971. Preparation of agarose by fractionation from the spectrum of polysaccharides in agar. Anal. Biochem. 44: 636-641. https://doi.org/10.1016/0003-2697(71)90253-3
  11. Duckworth M, Turvey JR. 1969. The action of a bacterial agarase on agarose, porphyran and alkali treated porphyran. Biochem. J. 113: 687-692.
  12. Ekborg NA, Talyor LE, Longmire AG, Henrissat B, Weiner RM, Hucheson SW. 2006. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl. Environ. Microbiol. 72: 3396-3405. https://doi.org/10.1128/AEM.72.5.3396-3405.2006
  13. Fu W, Han B, Duan D, Liu W, Wang C. 2008. Purification and characterization of agarase from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915-922. https://doi.org/10.1007/s10295-008-0365-2
  14. Fu XT, Lin H, Kim SM. 2008. Purification and characterization of a novel beta-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol. 78: 265-273. https://doi.org/10.1007/s00253-007-1303-3
  15. Fu XT, Kim SM. 2010. Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8: 200-218. https://doi.org/10.3390/md8010200
  16. Gill J, Rixon JE, Bolam DN, McQueen-Mason S, Simpson PJ, Williamson MP. 1999. The Type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J. 342: 473-480. https://doi.org/10.1042/0264-6021:3420473
  17. Gold P. 1992. Use of a novel agarose gel-digesting enzyme for easy and rapid purification of PCR-amplified DNA for sequencing. Biotechniques 13: 132-134.
  18. Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696.
  19. Henshaw J, Bolam DN, Pires VM, Czjzek M, Henrissat B, Ferreira LM, et al. 2004. The family 6 carbohydrate-binding module cmCBM6-2 contains two ligand-binding sites with distinct specificities. J. Biol. Chem. 279: 21552-21559. https://doi.org/10.1074/jbc.M401620200
  20. Hu Z, Lin BK, Xu Y, Zhong MQ, Liu GM. 2009. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106: 181-190. https://doi.org/10.1111/j.1365-2672.2008.03990.x
  21. Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, et al. 2005. The endo-${\beta}$-agarases AgaA and AgaB from the marine bacterium Zobelli agalactanivorans: Two paralogue enzymes with different molecular organization catalytic behaviours. Biochem. J. 385: 703-713. https://doi.org/10.1042/BJ20041044
  22. Kobayashi R, Takisada M, Suzuki T, Kirimira K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
  23. Kim DY, Ham SJ, Lee HJ, Cho HY, Kim JH, Kim YJ, et al. 2012. Cloning and characterization of a modular GH5 beta-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102: 9185-9192.
  24. Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, et al. 2010. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: An exo-type beta-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227-234. https://doi.org/10.1007/s00253-009-2256-5
  25. Kim HT, Lee S, Kim KH, Choi IG. 2012. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 107: 301-306. https://doi.org/10.1016/j.biortech.2011.11.120
  26. Kumagai Y, Kawakami K, Mukaihara T, Kimura M, Hatanaka T. 2012. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie 94: 2783-2790. https://doi.org/10.1016/j.biochi.2012.09.012
  27. Long M, Yu Z, Xu X. 2010. A novel ${\beta}$-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar. Biotechnol. 12: 62-69. https://doi.org/10.1007/s10126-009-9200-7
  28. Lee DG, Park GT, Kim NY, Lee EJ, Jang MK, Shin YG, et al. 2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1925-1932. https://doi.org/10.1007/s10529-006-9171-y
  29. McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP. 2004. Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal. Biochem. 326: 49-54. https://doi.org/10.1016/j.ab.2003.11.011
  30. Michel G, Barbeyron T, Kloareg B, Czjzek M. 2009. The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity. Glycobiology 19: 615-623. https://doi.org/10.1093/glycob/cwp028
  31. Morrice LM, McLean MW, Williamson FB, Long WF. 1983. Beta-agarase I and II from Pseudoalteromonas atlantica. Purification and some properties. Eur. J. Biochem. 135: 553-558. https://doi.org/10.1111/j.1432-1033.1983.tb07688.x
  32. Nikapitiya C, Oh C, Lee Y, Lee S, Whang I, Lee J. 2010. Characterization of a glycoside hydrolase family 50 thermostable ${\beta}$-agarase AgrA from marine bacteria Agarivorans sp. Ag17. Fish. Aqua. Sci. 13: 36-48.
  33. Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta agarase from a deep-sea Microbulbifer-like isolate. Appl. Microbiol. Biotechnol. 66: 266-275. https://doi.org/10.1007/s00253-004-1757-5
  34. Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, et al. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable beta-agarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64: 505-514. https://doi.org/10.1007/s00253-004-1573-y
  35. Oh C, Nikapitiya C, Lee Y, Whang I, Kang DH, Heo SJ, et al. 2010. Molecular cloning, characterization and enzymatic properties of a novel beta a garase from a marine isolate Pseudoalteromonas sp. AG52. Braz. J. Microbiol. 41: 876-889. https://doi.org/10.1590/S1517-83822010000400006
  36. Oh C, Nikapitiya C, Lee Y, Whang I, Kim SJ, Kang DH, et al. 2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J. Ind. Microbiol. Biotechnol. 37: 483-494. https://doi.org/10.1007/s10295-010-0694-9
  37. Santos CR, Paiva JH, Sforca ML, Neves JL, Navarro RZ, Cota J, et al. 2012. Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem. J. 441: 95-104. https://doi.org/10.1042/BJ20110869
  38. Shi YL, Lu XZ, Yu WG. 2008. A new ${\beta}$-agarase from marine bacterium Janthinobacterium sp. SY12. World J. Microb. Biotechnol. 24: 2659-2664. https://doi.org/10.1007/s11274-008-9792-5
  39. Spurway TD, Morland C, Cooper A, Sumner I, Hazlewood GP, O'Donnell AG, et al. 1997. Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding. J. Biol. Chem. 272: 17523-17530. https://doi.org/10.1074/jbc.272.28.17523
  40. Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): An endo-type ${\beta}$-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
  41. Temuujin U, Chi WJ, Chang YK, Hong SK. 2012. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type ${\beta}$-agarase-producing neoagarobiose. J. Bacteriol. 194: 142-149. https://doi.org/10.1128/JB.05978-11
  42. Tomme P, Driver DP, Amandoron EA, Miller Jr RC, Antony R, Warren J, et al. 1995. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J. Bacteriol. 177: 4356-4363.
  43. Wang J, Jiang X, Mou H, Guan H. 2004. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol. 16: 333-340. https://doi.org/10.1023/B:JAPH.0000047944.40463.e6
  44. Wang JX, Mou HJ, Jiang XL, Guan HS. 2006. Characterization of a novel ${\beta}$-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839. https://doi.org/10.1007/s00253-005-0207-3
  45. Weinberger F, Richard C, Kloareg B, Kashman Y, Hppe H, Friedlander M. 2001. Structure-activity relationships of oligoagar elicitors towards Gracilaria conferta. J. Phycol. 37: 418-426. https://doi.org/10.1046/j.1529-8817.2001.037003418.x
  46. Young KS, Bhattacharjee SS, Yaphe W. 1978. Enzymic cleavage of the alpha-linkages in agarose, to yield agarooligosaccharides. Carbohydr. Res. 66: 207-211. https://doi.org/10.1016/S0008-6215(00)83253-X
  47. Zhang WW, Sun L. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831. https://doi.org/10.1128/AEM.02872-06

Cited by

  1. Marine enzymes and food industry: insight on existing and potential interactions vol.1, pp.None, 2013, https://doi.org/10.3389/fmars.2014.00046
  2. Cloning and Characterization of a Novel Agarase from a Newly Isolated Bacterium Simiduia sp. Strain TM-2 Able to Degrade Various Seaweeds vol.177, pp.3, 2013, https://doi.org/10.1007/s12010-015-1765-1
  3. 해양성 Marinomonas sp. SH-2 균주가 생성하는 agarase의 분리 및 특성조사 vol.26, pp.2, 2016, https://doi.org/10.5352/jls.2016.26.2.198
  4. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediments vol.6, pp.None, 2016, https://doi.org/10.1016/j.bcab.2016.04.007
  5. 분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사 vol.26, pp.4, 2016, https://doi.org/10.5352/jls.2016.26.4.453
  6. 재조합 한천 분해효소의 생산과 응용 vol.8, pp.1, 2013, https://doi.org/10.15433/ksmb.2016.8.1.001
  7. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail vol.66, pp.8, 2016, https://doi.org/10.1099/ijsem.0.001165
  8. Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B vol.101, pp.3, 2017, https://doi.org/10.1007/s00253-016-7831-y
  9. Energy and Food Security from Macroalgae vol.8, pp.1, 2013, https://doi.org/10.1080/09766901.2017.1351511
  10. Agarolytic culturable bacteria associated with three antarctic subtidal macroalgae vol.34, pp.6, 2018, https://doi.org/10.1007/s11274-018-2456-1
  11. Characterization and overexpression of a glycosyl hydrolase family 16 β-agarase Aga0917 from Pseudoalteromonas fuliginea YTW1-15-1 vol.64, pp.6, 2018, https://doi.org/10.2323/jgam.2018.02.002
  12. A Novel Glycosyl Hydrolase Family 16 β-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gi vol.28, pp.5, 2013, https://doi.org/10.4014/jmb.1709.09050
  13. Recombinant β-agarases: insights into molecular, biochemical, and physiochemical characteristics vol.8, pp.10, 2013, https://doi.org/10.1007/s13205-018-1470-1
  14. 한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등 vol.30, pp.3, 2013, https://doi.org/10.5352/jls.2020.30.3.304
  15. Implications of agar and agarase in industrial applications of sustainable marine biomass vol.104, pp.7, 2013, https://doi.org/10.1007/s00253-020-10412-6
  16. Expression and Characterization of a GH16 Family β-Agarase Derived from the Marine Bacterium Microbulbifer sp. BN3 and Its Efficient Hydrolysis of Agar Using Raw Agar-Producing Red Seaweeds Graci vol.10, pp.8, 2013, https://doi.org/10.3390/catal10080885
  17. Marine‐polysaccharide degrading enzymes: Status and prospects vol.19, pp.6, 2013, https://doi.org/10.1111/1541-4337.12630