DOI QR코드

DOI QR Code

New Species of the Genus Metschnikowia Isolated from Flowers in Indonesia, Metschnikowia cibodasensis sp. nov.

  • Sjamsuridzal, Wellyzar (Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia) ;
  • Oetari, Ariyanti (Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia) ;
  • Nakashima, Chiharu (Graduate School of Bioresources, Mie University) ;
  • Kanti, Atit (Research Center for Biology, Indonesian Institute of Sciences) ;
  • Saraswati, Rasti (Indonesian Soil Research Institute, Ministry of Agriculture) ;
  • Widyastuti, Yantyati (Research Center for Biotechnology, Indonesian Institute of Sciences) ;
  • Ando, Katsuhiko (Department of Biotechnology, National Institute of Technology and Evaluation)
  • Received : 2013.01.03
  • Accepted : 2013.03.15
  • Published : 2013.07.28

Abstract

A novel species, Metschnikowia cibodasensis, is proposed to accommodate eight strains (ID03-$0093^T$, ID03-0094, ID03-0095, ID03-0096, ID03-0097, ID03-0098, ID03-0099, and ID03-0109) isolated from flowers of Saurauia pendula, Berberis nepalensis, and Brunfelsia americana in Cibodas Botanical Garden, West Java, Indonesia. The type strain of M. cibodasensis is ID03-$0093^T$ (= NBRC $101693^T$ =UICC $Y-335^T$ = BTCC-$Y25^T$). The common features of M. cibodasensis are a spherical to ellipsoidopedunculate shaped ascus, which contains one or two needle-shaped ascospores, and lyse at maturity. Asci generally develop directly from vegetative cells but sometimes from chlamydospores. The neighbor-joining tree based on the D1/D2 domain of nuclear large subunit (nLSU) ribosomal DNA sequences strongly supports that M. cibodasensis (eight strains) and its closest teleomorphic species, M. reukaufii, are different species by a 100% bootstrap value. The type strain of M. cibodasensis, ID03-$0093^T$, differed from M. reukaufii NBRC $1679^T$ by six nt (five substitutions and one deletion) in their D1/D2 region of nLSU rDNA, and by 18 nt (five deletions, four insertions, and nine substitutions) in their internal transcribed spacer regions of rDNA, respectively. Four strains representative of M. cibodasensis (ID03-$0093^T$, ID03-0095, ID03-0096, and ID03-0099) showed a mol% G+C content of $44.05{\pm}0.25%$, whereas that of M. reukaufii NBRC $1679^T$ was 41.3%. The low value of DNA-DNA homology (5-16%) in four strains of M. cibodasensis and M. reukaufii NBRC $1679^T$ strongly supported that these strains represent a distinct species.

Keywords

References

  1. Antonovics J. 2005. Plant venereal diseases: Insights from a messy metaphor. New Phytol. 165: 71-80.
  2. Burke D, Dawson D, Stearns T. 2000. Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Course Manual. 2000 Ed. CSHL Press.
  3. Ezaki T, Hashimoto Y, Yabuuchi E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229. https://doi.org/10.1099/00207713-39-3-224
  4. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  5. Felsenstein J. 1993. Phylogeny Inference Package (PHYLIP). Version 3.5. University of Washington, Seattle.
  6. Gimenez-Jurado G, Kurtzman CP, Starmer WT, Spencer-Martins I. 2003. Metschnikowia vanudenii sp.nov. and Metschnikowia lachancei sp. nov., from flowers and associated insects in North America. Int. J. Syst. Evol. Microbiol. 53: 1665-1670. https://doi.org/10.1099/ijs.0.02470-0
  7. Hong SG, Chun J, Oh HW, Bae KS. 2001. Metschnikowia koreensis sp. nov., a novel yeast species isolated from flowers in Korea. Int. J. Syst. Evol. Microbiol. 51: 1927-1931. https://doi.org/10.1099/00207713-51-5-1927
  8. Hong SG, Bae KS, Herzberg M, Titze A, Lachance MA. 2003. Candida kunwiensis sp. nov., a yeast associated with flowers and bumblebees. Int. J. Syst. Evol. Microbiol. 53: 367-372. https://doi.org/10.1099/ijs.0.02200-0
  9. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  10. Kurihara Y, Sukarno N, Ilyas M, Yuniarti E, Mangunwardoyo W, Saraswati R, et al. 2008. Entomopathogenic fungi isolated from suspended-soil inhabiting arthropods in East Kalimantan, Indonesia. Mycoscience 49: 241-249. https://doi.org/10.1007/S10267-008-0414-8
  11. Kurtzman CP. 1998. Nuclear DNA hybridization: Quantitation of close genetic relationships, pp. 63-68. In Kurtzman CP, Fell JW (eds.). The Yeasts, a Taxonomic Study, 4th Ed. Elsevier, Amsterdam.
  12. Kurtzman CP. 2006. Yeast species recognition from gene sequence analyses and other molecular methods. Mycoscience 47: 65-71. https://doi.org/10.1007/S10267-006-0280-1
  13. Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73: 331-371. https://doi.org/10.1023/A:1001761008817
  14. Lachance MA, Bowles JM. 2002. Metschnikowia arizonensis sp. nov. and Metschnikowia dekortorum, two new large-spored yeast species associated with floricolous beetles. FEMS Yeast Res. 2: 81-86.
  15. Lachance MA, Bowles JM. 2004. Metschnikowia similis sp. nov. and Metschnikowia colocasiae sp. nov., two ascomycetous yeasts isolated from Conotelus spp. (Coleoptera: Nitidulidae) in Costa Rica. Stud. Mycol. 50: 69-76.
  16. Lachance MA, Bowles JM, Kwon S, Marinoni G, Starmer WT, Janzen DH. 2001. Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. Can. J. Microbiol. 47: 103-109. https://doi.org/10.1139/cjm-47-2-103
  17. Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH. 2001. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res. 1: 1-8.
  18. Lachance MA, Bowles JM, Starmer WT. 2003. Metschnikowia santacecilia, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Res. 3: 97-103.
  19. Lachance MA, Ewing CP, Bowles JM, Starmer WT. 2005. Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. Int. J. Syst. Evol. Microbiol. 55: 1369-1377. https://doi.org/10.1099/ijs.0.63615-0
  20. Lachance MA, Anderson TM, Starmer WT. 2006. A new subclade of haplontic Metschnikowia species associated with insects of morning glory flowers in Africa and description of Metschnikowia aberdeeniae sp. nov. Int. J. Syst. Evol. Microbiol. 56: 1141-1145. https://doi.org/10.1099/ijs.0.64195-0
  21. Lachance MA, Bowles JM, Wiens F, Dobson J, Ewing CP. 2006. Metschnikowia orientalis sp. nov., an Australian yeast from nitidulid beetles. Int. J. Syst. Evol. Microbiol. 56: 2489-2493. https://doi.org/10.1099/ijs.0.64452-0
  22. Lachance MA, Bowles JM, Anderson TM, Starmer WT. 2008. Metschnikowia shivogae sp. nov., a yeast species associated with insects of morning glory flowers in East Africa. Int. J. Syst. Evol. Microbiol. 58: 2241-2244. https://doi.org/10.1099/ijs.0.2008/000596-0
  23. Martini A, Phaff HJ. 1973. The optical determination of DNA-DNA homologies in yeasts. Ann. Microbiol. 23: 59-68.
  24. Mikata K. 1995. Surface structure of ascospores and germination of Metschnikowia. IFO Res. Comm. 17: 67-74.
  25. Miller MW, Phaff HJ. 1998. Metschnikowia kamienski, pp. 256-267. In Kurtzman CP, Fell JW (eds.). The Yeasts, a Taxonomic Study, 4th Ed. Elsevier, Amsterdam.
  26. Nakashima C, Oetari A, Kanti A, Saraswati R, Widyastuti Y, Ando K. 2010. New species and newly recorded species of Cercospora and allied genera from Indonesia. Mycosphere 1: 315-323.
  27. Peter G, Tornai-Lehocski J, Suzuki M, Dlauchy D. 2004. Metschnikowia viticola sp. nov., a new yeast species from grape. Antonie Van Leeuwenhoek 87: 155-160.
  28. Price CW, Fuson GB, Phaff HJ. 1978. Genome comparison in yeast systematics: Delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Microbiol. Rev. 42: 161-193.
  29. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  30. Sjamsuridzal W, Oetari A. 2003. Rapid preparation of fungal and bacterial genomic DNA for PCR. Hayati 10: 122-124.
  31. Sjamsuridzal W, Oetari A, Kanti A, Saraswati R, Nakashima C, Widyastuti Y, et al. 2010. Ecological and taxonomical perspective of yeasts in Indonesia. Microbiol. Indones. 4: 49-57. https://doi.org/10.5454/mi.4.2.1
  32. Spencer JFT, Spencer DM. 1997. Ecology: Where yeasts live, pp. 33-58. In Spencer JFT, Spencer DM (eds.). Yeasts in Natural and Artificial Habitats. Springer-Verlag, Berlin, Heidelberg.
  33. Sugita T, Nishikawa A, Ikeda R, Shinoda T. 1999. Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J. Clin. Microbiol. 37: 1985-1993.
  34. Sukarno N, Kurihara Y, Ilyas M, Mangunwardoyo W, Yuniarti E, Sjamsuridzal W, et al. 2009. Lecanicillium and Verticillium species from Indonesia and Japan including three new species. Mycoscience 50: 369-379. https://doi.org/10.1007/S10267-009-0493-1
  35. Talens LT, Miller MW, Miranda M. 1973. Electron micrograph study of the asci and ascospores of Metschnikowia Kamienski. J. Bacteriol. 115: 316-322.
  36. Talens LT, Miranda M, Miller MW. 1973. Electron micrography of bud formation in Metschnikowia krissii. J. Bacteriol. 114: 413-423.
  37. Tamaoka J, Komagata K. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  38. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  39. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press Incorporation, New York.
  40. Yarrow D. 1998. Methods for the isolation, maintenance and identification of yeasts, pp. 75-100. In Kurtzman CP, Fell JW (eds.). The Yeasts, a Taxonomic Study, 4th Ed. Elsevier, Amsterdam.

Cited by

  1. Four new species of Metschnikowia and the transfer of seven Candida species to Metschnikowia and Clavispora as new combinations vol.111, pp.11, 2013, https://doi.org/10.1007/s10482-018-1095-8