DOI QR코드

DOI QR Code

Purification and Characterization of an Alkaliphilic Alginate Lyase AlgMytC from Saccharophagus sp. Myt-1

  • Sakatoku, Akihiro (Graduate School of Science and Engineering, University of Toyama) ;
  • Tanaka, Daisuke (Graduate School of Science and Engineering, University of Toyama) ;
  • Nakamura, Shogo (Graduate School of Science and Engineering, University of Toyama)
  • Received : 2013.01.29
  • Accepted : 2013.02.16
  • Published : 2013.06.28

Abstract

In a previous study, we isolated and reported a second species of the Saccharophagus genus, Saccharophagus sp. strain Myt-1. In the present study, an alginate lyase gene (algMytC) from the genomic DNA of Myt-1 was cloned and characterized. The DNA sequence fragment obtained contained an open reading frame of 1,032 bp that encoded a protein of 343 amino acids with an estimated molecular mass of 37.6 kDa and a pI of 6.60. The deduced protein, AlgMytC, had the conserved amino acid sequences (RTELREM, QIH, YFKAGVYNQ) of the polysaccharide lyase family 7. A BLAST homology search indicated that AlgMytC shared an amino acid sequence identity of 95.9% with alg7A of S. degradans 2-40. The cloned and purified AlgMytC protein showed optimal activity at $40^{\circ}C$, and retained more than 90% of its total activity even after treatment at $25^{\circ}C$ for 24 h. AlgMytC was very alkaliphilic with an optimal pH of 9.0, and more than 90% of its activity was retained in the pH range 8.5-10.0. Moreover, AlgMytC was stable over a wide pH range. The activity of AlgMytC was also stable in the presence of various detergents.

Keywords

References

  1. Akiyama, H., T. Endo, R. Nakakita, K. Murata, Y. Yonemoto, and K. Okayama. 1992. Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem. 56: 355-356. https://doi.org/10.1271/bbb.56.355
  2. An, Q. D., G. L. Zhang, H. T. Wu, Z. C. Zhang, G. S. Zheng, L. Luan, et al. 2009. Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. J. Appl. Microbiol. 106: 161-170. https://doi.org/10.1111/j.1365-2672.2008.03988.x
  3. Andrykovitch, G. and I. Marx. 1988. Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl. Environ. Microbiol. 54: 1061-1062.
  4. Calumpong, H. P., A. P. Maypa, and M. Magbanua. 1999. Population and alginate yield and quality assessment of four Sargassum species in Negros Island, central Philippines Hydrobiologia 398/399: 211-215. https://doi.org/10.1023/A:1017015824822
  5. Ekborg, N. A., J. M. Gonzalez, M. B. Howard, L. E. Taylor, S. W. Hutcheson, and R. M. Weiner. 2005. Saccharophagus degradans gen. nov., sp. nov., a versatile marine decomposer of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 55: 1545-1549. https://doi.org/10.1099/ijs.0.63627-0
  6. Evans, L. R. and A. Linker. 1973. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J. Bacteriol. 116: 915-924.
  7. Gacesa, P. 1988 Alginates. Carbohydr. Polym. 8: 161-182. https://doi.org/10.1016/0144-8617(88)90001-X
  8. Ghose, T. K. 1987 Measurement of cellulase activity. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  9. González, J. M. and R. M. Weiner. 2000. Phylogenetic characterization of marine bacterium strain 2-40, a decomposer of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 50: 831-834. https://doi.org/10.1099/00207713-50-2-831
  10. Gorin, P. A. J. and J. F. T. Spencer. 1966. Exocellular alginic acid from Azotobacter vinelandii. Can. J. Chem. 44: 993-998. https://doi.org/10.1139/v66-147
  11. Haug, A., B. Larsen, and O. Smidsrød. 1966. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand. 20: 183-190. https://doi.org/10.3891/acta.chem.scand.20-0183
  12. Horikoshi, K. and T. Akiba. 1982. Alkalophilic Microorganisms. Japan Scientific Societies Press, Tokyo.
  13. Huang, L., J. Zhou, X. Li, Q. Peng, H. Lu, and Y. Du. 2013. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol. 40: 113-122. https://doi.org/10.1007/s10295-012-1210-1
  14. Iwamoto, Y., X. Xu, T. Tamura, T. Oda, and T. Muramatsu. 2003. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci. Biotechnol. Biochem. 67: 258-263. https://doi.org/10.1271/bbb.67.258
  15. Iwamoto, M., M. Kurachi, T. Nakashima, D. Kim, K. Yamaguchi, T. Oda, et al. 2005. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett. 579: 4423-4429. https://doi.org/10.1016/j.febslet.2005.07.007
  16. Iwasaki, K. and Y. Matsubara. 2000. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci. Biotechnol. Biochem. 64: 1067-1070. https://doi.org/10.1271/bbb.64.1067
  17. Kim, H. S., C. G. Lee, and E. Y. Lee. 2011. Alginate lyase: Structure, property, and application. Biotechnol. Bioprocess Eng. 16: 843-851. https://doi.org/10.1007/s12257-011-0352-8
  18. Kim, H. T., S. Lee, D. Lee, H. S. Kim, W. G. Bang, K. H. Kim, and I. G. Choi. 2010. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: An exo-type beta-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227-234. https://doi.org/10.1007/s00253-009-2256-5
  19. Kim, H. T., J. H. Chung, D. Wang, J. Lee, H. C. Woo, I. G. Choi, and K. H. Kim. 2012. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl. Microbiol. Biotechnol. 93: 2233-2239. https://doi.org/10.1007/s00253-012-3882-x
  20. Kim, H. T., H. J. Ko, N. Kim, D. Kim, D. Lee, I. G. Choi, et al. 2012. Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol. Lett. 34: 1087-1092. https://doi.org/10.1007/s10529-012-0876-9
  21. Ko, J. K., M. W. Jung, K. H. Kim, and I. G. Choi 2009. Optimal production of a novel endo-acting beta-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). N. Biotechnol. 26: 157-164. https://doi.org/10.1016/j.nbt.2009.07.009
  22. Kobayashi, T., K. Uchimura, M. Miyazaki, Y. Nogi, and K. Horikoshi. 2009. A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 13: 121-129. https://doi.org/10.1007/s00792-008-0201-7
  23. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  24. Li, J. W., S. Dong, J. Song, C. B. Li, X. L. Chen, B. B. Xie, and Y. Z. Zhang. 2011. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar. Drugs 9: 109-123. https://doi.org/10.3390/md9010109
  25. Park, H. H., N. Kam, E. Y. Lee, and H. S. Kim. 2012. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol. 14: 189-202. https://doi.org/10.1007/s10126-011-9402-7
  26. Peciña, A. and A. Paneque. 1994. Detection of alginate lyase by activity staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent renaturation. Anal. Biochem. 15: 124-127.
  27. Sakatoku, A., M. Wakabayashi, Y. Tanaka, D. Tanaka, and S. Nakamura. 2012. Isolation of a novel Saccharophagus species (Myt-1) capable of degrading a variety of seaweeds and polysaccharides. MicrobiologyOpen 1: 2-12. https://doi.org/10.1002/mbo3.10
  28. Suda, K., Y. Tanji, K. Hori, and H. Unno. 1999. Evidence for a novel Chlorella virus-encoded alginate lyase. FEMS Microbiol. Lett. 180: 45-53. https://doi.org/10.1111/j.1574-6968.1999.tb08776.x
  29. Tanaka, D., S. Yoneda, Y. Yamashiro, A. Sakatoku, T. Kayashima, K. Yamakawa, and S. Nakamura. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168: 327-338. https://doi.org/10.1007/s12010-012-9776-7
  30. Uchimura, K., M. Miyazaki, Y. Nogi, T. Kobayashi, and K. Horikoshi. 2010. Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme. Mar. Biotechnol. 12: 526-533. https://doi.org/10.1007/s10126-009-9237-7
  31. Wargacki, A. J., E. Leonard, M. N. Win, D. D. Regitsky, C. N. Santos, P. B. Kim, et al. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308-313. https://doi.org/10.1126/science.1214547
  32. Watson, B. J., H. Zhang, A. G. Longmire, Y. H. Moon, and S. W. Hutcheson. 2009. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J. Bacteriol. 191: 5697-5705. https://doi.org/10.1128/JB.00481-09
  33. Weiner, R. M., L. E. Taylor 2nd, B. Henrissat, L. Hauser, M. Land, P. M. Coutinho, et al. 2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet. 4: e1000087. https://doi.org/10.1371/journal.pgen.1000087

Cited by

  1. Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium sp. Strain XT11 vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/368434
  2. Cloning, Expression, and Characterization of a Cold-Adapted and Surfactant-Stable Alginate Lyase from Marine Bacterium Agarivorans sp. L11 vol.25, pp.5, 2013, https://doi.org/10.4014/jmb.1409.09031
  3. Purification and characterization of a high salt-tolerant alginate lyase fromCobetiasp. WG-007 : Characterization of an Alginate Lyase vol.64, pp.4, 2013, https://doi.org/10.1002/bab.1506