References
- Battersby, A. R. 2000. Tetrapyrroles: The pigments of life. Nat. Prod. Rep. 17: 507-526. https://doi.org/10.1039/b002635m
- Kim, H. J., Y. D. Kwon, S. Y. Lee, and P. Kim. 2012. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Appl. Microbiol. Biotechnol. 94: 1079-1086. https://doi.org/10.1007/s00253-011-3779-0
- Kwon, O. H., S. Kim, D. H. Hahm, S. Y. Lee, and P. Kim. 2009. Potential application of the recombinant Escherichia colisynthesized heme as a bioavailable iron source. J. Microbiol. Biotechnol. 19: 604-609.
- Kwon, S. J., A. L. de Boer, R. Petri, and C. Schmidt-Dannert. 2003. High-level production of porphyrins in metabolically engineered Escherichia coli: Systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69: 4875-4883. https://doi.org/10.1128/AEM.69.8.4875-4883.2003
- Kwon, S. J., R. Petri, A. L. DeBoer, and C. Schmidt-Dannert. 2004. A high-throughput screen for porphyrin metal chelatases: Application to the directed evolution of ferrochelatases for metalloporphyrin biosynthesis. Chembiochem 5: 1069-1074. https://doi.org/10.1002/cbic.200400051
- Lee, M. J., S. J. Chun, H. J. Kim, A. S. Kwon, S. Y. Jun, S. H. Kang, and P. Kim. 2012. Porphyrin derivatives from a recombinant Escherichia coli grown on chemically defined medium. J. Microbiol. Biotechnol. 22: 1653-1658. https://doi.org/10.4014/jmb.1208.08054
- Monsen, E. R. and J. L. Balintfy. 1982. Calculating dietary iron bioavailability: Refinement and computerization. J. Am. Diet. Assoc. 80: 307-311.
- Rock, C. O., R. B. Calder, M. A. Karim, and S. Jackowski. 2000. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 275: 1377-1383. https://doi.org/10.1074/jbc.275.2.1377
- Rock, C. O., H. W. Park, and S. Jackowski. 2003. Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J. Bacteriol. 185: 3410-3415. https://doi.org/10.1128/JB.185.11.3410-3415.2003
- Shin, J. A., Y. D. Kwon, O. H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579-1584.
- Turhan, S., T. B. Altunkaynak, and F. Yazici. 2004. A note on the total and heme iron contents of ready-to-eat doner kebabs. Meat Sci. 67: 191-194. https://doi.org/10.1016/j.meatsci.2003.10.004
- Vallari, D. S. and S. Jackowski. 1988. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J. Bacteriol. 170: 3961-3966.
Cited by
- Prokaryotic type III pantothenate kinase enhances coenzyme A biosynthesis in Escherichia coli vol.61, pp.6, 2013, https://doi.org/10.2323/jgam.61.266
- Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli vol.25, pp.6, 2013, https://doi.org/10.4014/jmb.1411.11050
- Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli vol.5, pp.None, 2013, https://doi.org/10.1038/srep08584
- Growth retardation of Escherichia coli by artificial increase of intracellular ATP vol.42, pp.6, 2013, https://doi.org/10.1007/s10295-015-1609-6
- Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production vol.178, pp.6, 2013, https://doi.org/10.1007/s12010-015-1942-2
- A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield vol.82, pp.9, 2013, https://doi.org/10.1128/aem.00224-16
- Identification of the Regulon of AphB and Its Essential Roles in LuxR and Exotoxin Asp Expression in the Pathogen Vibrio alginolyticus vol.199, pp.20, 2013, https://doi.org/10.1128/jb.00252-17
- Metabolic engineering of Escherichia coli for secretory production of free haem vol.1, pp.9, 2013, https://doi.org/10.1038/s41929-018-0126-1
- Sensitization of Salmonella enterica with 5-aminolevulinic acid-induced endogenous porphyrins: a spectroscopic study vol.18, pp.11, 2013, https://doi.org/10.1039/c9pp00200f
- Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway vol.13, pp.None, 2013, https://doi.org/10.1186/s13036-019-0156-5
- Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli vol.8, pp.1, 2013, https://doi.org/10.1186/s40643-021-00482-3