DOI QR코드

DOI QR Code

Effect of Gene Amplifications in Porphyrin Pathway on Heme Biosynthesis in a Recombinant Escherichia coli

  • Lee, Min Ju (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Hye-Jung (Department of Biotechnology, The Catholic University of Korea) ;
  • Lee, Joo-Young (Department of Biotechnology, The Catholic University of Korea) ;
  • Kwon, An Sung (iNtRON Biotechnology Inc.) ;
  • Jun, Soo Youn (iNtRON Biotechnology Inc.) ;
  • Kang, Sang Hyeon (iNtRON Biotechnology Inc.) ;
  • Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
  • Received : 2013.02.13
  • Accepted : 2013.02.22
  • Published : 2013.05.28

Abstract

A recombinant E. coli co-expressing ALA synthase (hemA), NADP-dependent malic enzyme (maeB), and dicarboxylic acid transporter (dctA) was reported to synthesize porphyrin derivatives including iron-containing heme. To enhance the synthesis of bacterial heme, five genes of the porphyrin biosynthetic pathway [pantothenate kinase (coaA), ALA dehydratase (hemB), 1-hydroxymethylbilane synthase (hemC), uroporphyrinogen III synthase (hemD), and uroporphyrinogen III decarboxylase (hemE)] were amplified in the recombinant E. coli co-expressing hemA-maeB-dctA. Pantothenate kinase expression enabled the recombinant E. coli to accumulate intracellular CoA. Intracellular ALA was the most enhanced by uroporphyrinogen III synthase expression, porphobilinogen was the most enhanced by ALA dehydratase expression, uroporphyrin and coproporphyrin were the most enhanced by 1-hydroxymethylbilane synthase expression. The strain co-expressing coaA, hemA, maeB, and dctA produced heme of $0.49{\mu}mol/g$-DCW, which was twice as much from the strain without coaA expression. Further pathway gene amplifications for the porphyrin derivatives are discussed based on the results.

Keywords

References

  1. Battersby, A. R. 2000. Tetrapyrroles: The pigments of life. Nat. Prod. Rep. 17: 507-526. https://doi.org/10.1039/b002635m
  2. Kim, H. J., Y. D. Kwon, S. Y. Lee, and P. Kim. 2012. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Appl. Microbiol. Biotechnol. 94: 1079-1086. https://doi.org/10.1007/s00253-011-3779-0
  3. Kwon, O. H., S. Kim, D. H. Hahm, S. Y. Lee, and P. Kim. 2009. Potential application of the recombinant Escherichia colisynthesized heme as a bioavailable iron source. J. Microbiol. Biotechnol. 19: 604-609.
  4. Kwon, S. J., A. L. de Boer, R. Petri, and C. Schmidt-Dannert. 2003. High-level production of porphyrins in metabolically engineered Escherichia coli: Systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69: 4875-4883. https://doi.org/10.1128/AEM.69.8.4875-4883.2003
  5. Kwon, S. J., R. Petri, A. L. DeBoer, and C. Schmidt-Dannert. 2004. A high-throughput screen for porphyrin metal chelatases: Application to the directed evolution of ferrochelatases for metalloporphyrin biosynthesis. Chembiochem 5: 1069-1074. https://doi.org/10.1002/cbic.200400051
  6. Lee, M. J., S. J. Chun, H. J. Kim, A. S. Kwon, S. Y. Jun, S. H. Kang, and P. Kim. 2012. Porphyrin derivatives from a recombinant Escherichia coli grown on chemically defined medium. J. Microbiol. Biotechnol. 22: 1653-1658. https://doi.org/10.4014/jmb.1208.08054
  7. Monsen, E. R. and J. L. Balintfy. 1982. Calculating dietary iron bioavailability: Refinement and computerization. J. Am. Diet. Assoc. 80: 307-311.
  8. Rock, C. O., R. B. Calder, M. A. Karim, and S. Jackowski. 2000. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 275: 1377-1383. https://doi.org/10.1074/jbc.275.2.1377
  9. Rock, C. O., H. W. Park, and S. Jackowski. 2003. Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J. Bacteriol. 185: 3410-3415. https://doi.org/10.1128/JB.185.11.3410-3415.2003
  10. Shin, J. A., Y. D. Kwon, O. H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579-1584.
  11. Turhan, S., T. B. Altunkaynak, and F. Yazici. 2004. A note on the total and heme iron contents of ready-to-eat doner kebabs. Meat Sci. 67: 191-194. https://doi.org/10.1016/j.meatsci.2003.10.004
  12. Vallari, D. S. and S. Jackowski. 1988. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J. Bacteriol. 170: 3961-3966.

Cited by

  1. Prokaryotic type III pantothenate kinase enhances coenzyme A biosynthesis in Escherichia coli vol.61, pp.6, 2013, https://doi.org/10.2323/jgam.61.266
  2. Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli vol.25, pp.6, 2013, https://doi.org/10.4014/jmb.1411.11050
  3. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli vol.5, pp.None, 2013, https://doi.org/10.1038/srep08584
  4. Growth retardation of Escherichia coli by artificial increase of intracellular ATP vol.42, pp.6, 2013, https://doi.org/10.1007/s10295-015-1609-6
  5. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production vol.178, pp.6, 2013, https://doi.org/10.1007/s12010-015-1942-2
  6. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield vol.82, pp.9, 2013, https://doi.org/10.1128/aem.00224-16
  7. Identification of the Regulon of AphB and Its Essential Roles in LuxR and Exotoxin Asp Expression in the Pathogen Vibrio alginolyticus vol.199, pp.20, 2013, https://doi.org/10.1128/jb.00252-17
  8. Metabolic engineering of Escherichia coli for secretory production of free haem vol.1, pp.9, 2013, https://doi.org/10.1038/s41929-018-0126-1
  9. Sensitization of Salmonella enterica with 5-aminolevulinic acid-induced endogenous porphyrins: a spectroscopic study vol.18, pp.11, 2013, https://doi.org/10.1039/c9pp00200f
  10. Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway vol.13, pp.None, 2013, https://doi.org/10.1186/s13036-019-0156-5
  11. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli vol.8, pp.1, 2013, https://doi.org/10.1186/s40643-021-00482-3