DOI QR코드

DOI QR Code

Effect of Supplements $Mn^{2+}$, $Cu^{2+}$, and Aromatic Compounds and Penicillium decumbens on Lignocellulosic Enzyme Activity and Productivity of Catathelasma ventricosum

  • Liu, Yuntao (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Sun, Jun (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Luo, Zeyu (Hunan Academy of Agricultural Science) ;
  • Rao, Shengqi (School of Food Science and Engineering, Yangzhou University) ;
  • Su, Yujie (School of Food Science and Technology, Jiangnan University) ;
  • Yang, Yanjun (State Key Laboratory of Food Science and Technology, Jiangnan University)
  • 투고 : 2012.11.05
  • 심사 : 2012.12.12
  • 발행 : 2013.04.28

초록

This is the first report on using Catathelasma ventricosum for production of fruiting body and lignocellulosic enzymes. To improve the laccase activity and productivity of mushroom, the substrate was added with different supplements (eight aromatic compounds, $Mn^{2+}$, and $Cu^{2+}$). Based on the results, all these supplements can improve the laccase activity and productivity of C. ventricosum, and it seems that there is a critical value of laccase activity that affects the productivity of C. ventricosum. In addition, when Penicillium decumbens was inoculated into the substrate that had been cultivated with C. ventricosum for 20 days, the highest values of laccase activity, FPA activity, and productivity of C. ventricosum were obtained. Moreover, the laccase activity showed a positive correlation with the productivity of C. ventricosum. Finally, the effect of $Mn^{2+}$, $Cu^{2+}$, and P. decumbens on laccase activity was investigated by response surface methodology (RSM).

키워드

참고문헌

  1. Adsul, M. G., K. B. Bastawde, A. J. Varma, and D. V. Gokhale. 2007. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour. Technol. 98: 1467-1473. https://doi.org/10.1016/j.biortech.2006.02.036
  2. Bourbonnais, R. and M. G. Paice. 1988. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem. J. 255: 445-450.
  3. Baldrian, P. and J. Gabriel. 2002. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 206: 69-74. https://doi.org/10.1111/j.1574-6968.2002.tb10988.x
  4. Boer, C. G., L. Obici, C. G. M. de Souza, and R. M. Peralta. 2004. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour. Technol. 94: 107-112. https://doi.org/10.1016/j.biortech.2003.12.015
  5. Chen, S. C., D. B. Ma, W. Ge, and J. A. Buswell. 2003. Induction of laccase activity in the edible straw mushroom, Volvariella volvacea. FEMS Microbiol. Lett. 218: 143-148. https://doi.org/10.1111/j.1574-6968.2003.tb11510.x
  6. Chen, X. H., L. X. Xia, H. B. Zhou, and G. Z. Qiu. 2010. Chemical composition and antioxidant activities of Russula griseocarnosa sp. nov. J. Agric. Food Chem. 58: 6966-697. https://doi.org/10.1021/jf1011775
  7. Gaitan-Hernandez, R. and D. Salmones. 2008. Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions. Sci. Hortic. 118: 106-110.
  8. Homma, H., H. Shinoyama, Y. Nobuta, Y. Terashima, S. Amachi, and T. Fujii. 2007. Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried sugi (Cryptomeria japonica) twigs. J. Wood Sci. 53: 80-84. https://doi.org/10.1007/s10086-006-0810-7
  9. Kues, Y. and Y. Liu. 2000. Fruiting body production in Basidiomycetes. Appl. Microbiol. Biotechnol. 54: 141-152. https://doi.org/10.1007/s002530000396
  10. Kim, M. K., R. K. Math, K. M. Cho, K. J. Shin, J. O. Kim, J. S. Ryu, et al. 2008. Effect of Pseudomonas sp P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. Bioresour. Technol. 99: 3306-3308. https://doi.org/10.1016/j.biortech.2007.06.039
  11. Kanwal, H. K. and M. S. Reddy. 2011. Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World J. Microbiol. Biotechnol. 27: 687-691. https://doi.org/10.1007/s11274-010-0507-3
  12. Lechner, B. E. and V. L. Papinutti. 2006. Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem. 41: 594-598. https://doi.org/10.1016/j.procbio.2005.08.004
  13. Liu, G. F., H. K. Zhou, H. Hu, Z. H. Zhu, Y. Hayat, H. M. Xu, and J. Yang. 2007. Genetic analysis for brix weight per stool and its component traits in sugarcane (Saccharum officinarum). J. Zhejiang Univ. Sci. (B) 8: 860-866. https://doi.org/10.1631/jzus.2007.B0860
  14. Liu, Y. T., Z. Y. Luo, C. N. Long, H. D. Wang, M. N. Long, and Z. Hu. 2011. Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnol. 28: 733-737. https://doi.org/10.1016/j.nbt.2010.12.003
  15. Liu, Y. T., J. Sun, Z. Y. Luo, S. Q. Rao, Y. J. Su, R. R. Xu, and Y. J. Yang. 2012. Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem. Toxicol. 50: 1238-1244. https://doi.org/10.1016/j.fct.2012.01.023
  16. Lu, X. and S. J. Ding. 2010. Effect of $Cu^{2+}$, $Mn^{2+}$ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience 51: 68-74. https://doi.org/10.1007/S10267-009-0002-6
  17. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  18. Mata, G., D. M. M. Hernandez, and L. G. I. Andreu. 2005. Changes in lignocellulolytic enzyme activites in six Pleurotus spp. strains cultivated on coffee pulp in confrontation with Trichoderma spp. World J. Microbiol. Biotechnol. 21: 143-150. https://doi.org/10.1007/s11274-004-3041-3
  19. Palmieri, G., C. Bianco, G. Cennamo, P. Giardina, G. Marino, M. Monti, and G. Sannia. 2001. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 67: 2574-2579.
  20. Philippoussis, A., G. Zervakis, and P. Diamantopoulou. 2001. Bioconversion of agricultural lignocellulosic wastes through the cultivation of edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J. Microbiol. Biotechnol. 17: 191-200. https://doi.org/10.1023/A:1016685530312
  21. Randall, J. M., R. N. Sayre, W. G. Schultz, R. Y. Fong, A. P. Mossman, R. E. Tribelhorn, and R. M. Saunders. 1985. Rice bran stabilization by extrusion cooking for extraction of edible oil. J. Food Sci. 50: 361-364.
  22. Robinson, T., B. Chandran, and P. Nigam. 2001. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb. Technol. 29: 575-579. https://doi.org/10.1016/S0141-0229(01)00430-6
  23. Reddy, G. V., P. R. Babu, P. Komaraiah, K. R. R. M. Roy, and I. L. Kothari. 2003. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem. 38: 1457-1462. https://doi.org/10.1016/S0032-9592(03)00025-6
  24. Ribas, L. C. C., M. M. de Mendonca, C. M. Camelini, and C. H. L. Soares. 2009. Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation. Bioresour. Technol. 100: 4750-4757. https://doi.org/10.1016/j.biortech.2008.10.059
  25. Sheehan, J. 2001. The road to bioethanol: A strategic perspective of the U.S. Department of energy's national ethanol program, pp. 2-25. In M. E. Himmel, J. O. Baker, and J. N. Saddler (eds.). Glycosyl Hydrolases for Biomass Conversion. American Chemical Society, Washington, DC.
  26. Shaikh, H. M., K. V. Pandare, G. Nair, and A. J. Varma. 2009. Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer. Carbohyd. Polym. 76: 23-29. https://doi.org/10.1016/j.carbpol.2008.09.014
  27. Tong, H. B., F. G. Xia, K. Feng, G. R. Sun, X. X. Gao, L. W. Sun, et al. 2009. Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour. Technol. 100: 1682-1686. https://doi.org/10.1016/j.biortech.2008.09.004
  28. Velazquez-Cedeno, M., A. M. Farnet, G. Mata, and J. M. Savoie. 2008. Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates. Bioresour. Technol. 99: 6966-6973. https://doi.org/10.1016/j.biortech.2008.01.022
  29. Wang, Y. P., J. H. Li, Y. H. Liu, W. W. Zeng, L. Yang, R. S. Ruan, et al. 2010. Comprehensive utilization of bagasse: State of the art. Chin. Agric. Sci. Bull. 26: 370-375.
  30. Xing, Z. T., J. H. Cheng, Q. Tan, and Y. J. Pan. 2006. Effect of nutritional parameters on laccase production by the culinary and medicinal mushroom, Grifola frondosa. World J. Microbiol. Biotechnol. 22: 1215-1221. https://doi.org/10.1007/s11274-006-9163-z
  31. Yoon, J. J. and Y. K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot Basidiomycete Fomitopsis palustris. J. Microbiol. 43: 487-492.
  32. Zhang, R., X. Li, and J. G. Fadel. 2002. Oyster mushroom cultivation with rice and wheat straw. Bioresour. Technol. 82: 277-284. https://doi.org/10.1016/S0960-8524(01)00188-2

피인용 문헌

  1. Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification vol.6, pp.2, 2016, https://doi.org/10.1007/s13205-016-0548-x
  2. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification vol.183, pp.1, 2017, https://doi.org/10.1007/s12010-017-2439-y
  3. Variation in Particle Size, Moisture Content and Supplements for Improvement of Cotton Stalks’ Lignin Degradation by Phlebia radiata and Saccharification vol.60, pp.2, 2013, https://doi.org/10.1080/00194506.2017.1350826
  4. An innovative co-fungal treatment to poplar bark sawdust for delignification and polyphenol enrichment vol.157, pp.None, 2013, https://doi.org/10.1016/j.indcrop.2020.112896