DOI QR코드

DOI QR Code

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Received : 2012.11.13
  • Accepted : 2012.12.14
  • Published : 2013.04.28

Abstract

A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

Keywords

References

  1. Adeyanju, M. M., F. K. Agboola, B. O. Omfuvbe, O. H. Oyefuga, and O. O. Adebavo. 2007. A thermostable extracellular α-amylase from Bacillus licheniformis isolated from cassava steep water. Biotechnology 6: 473-480. https://doi.org/10.3923/biotech.2007.473.480
  2. American Association of Cereal Chemists (AACC). 2000. Approved Methods of the AACC, 10th Ed. Methods 46-30, 30-10, 44-19, 08-01. The American Association of Cereal Chemists, St. Paul, MN, USA.
  3. Anto, H., U. Trivedi, and K. Patel. 2006. Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Food Technol. Biotechnol. 44: 241-245.
  4. Arikan, B. 2008. Highly thermostable, thermophilic, alkaline, SDS and chelating resistant amylase from thermophilic Bacillus isolate A3-15. Bioresour. Technol. 99: 3071-3076.
  5. Asgher, M., M. J. Asad, S. U. Rahman, and R. L. Legge. 2007. A thermostable amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950-955. https://doi.org/10.1016/j.jfoodeng.2005.12.053
  6. Ashis, K., M. B. Mukherjee, and R. K. Sudhir. 2009. To study the influence of different components of fermentable substrates on induction of extracellular alpha amylase synthesis by Bacillus subtilis DM-03 in solid state fermentation and exploration of feasibility for inclusion of alpha amylase in laundry detergent formulations. Biochem. Eng. J. 43: 149-156. https://doi.org/10.1016/j.bej.2008.09.011
  7. Baysal, Z., F. Uyar, and C. Aytekin. 2003. Solid-state fermentation for production of alpha-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 38: 1665- 1668.
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Dettori, B. G., F. G. Priest, and J. R Stark. 1992. Hydrolysis of starch granules by the amylase from Bacillus stearothermophilus NCA 26. Process Biochem. 27: 17-21. https://doi.org/10.1016/0032-9592(92)80004-M
  10. Dhayna, G., S. Sivaramakrishnan, K. M. Nampoothiri, and A. Pandey. 2006. Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol. Biotechnol. 44: 269-274.
  11. Doehlert, D. H. 1970. Uniform shell designs. Appl. Stat. 19: 231-239 https://doi.org/10.2307/2346327
  12. Dubois, M., K. A Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  13. Duedahl-Olesen, L., K. M. Kragh, and W. Zimmermann. 2000. Purification and characterization of a malto-oligosaccharideforming amylase active at high pH from Bacillus clausii BT-21. Carbohydr. Res. 329: 97-107. https://doi.org/10.1016/S0008-6215(00)00153-1
  14. Egelseer, E., I. Schocher, and M. Sara. 1995. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J. Bacteriol. 177: 1444-1451.
  15. Ellaiah, P., K. Adinarayana, Y. Bhavani, P. Padmaja, and B. Srinivasulu. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620. https://doi.org/10.1016/S0032-9592(02)00188-7
  16. Gangadaharan, D., K. M. Nampoothiri, S. Shivaramakrishnan, and A. Pandey. 2009. Biochemical characterization of raw-starchdigesting alpha amylase purified from Bacillus amyloliquefaciens. Appl. Biochem. Biotechnol. 158: 653-662. https://doi.org/10.1007/s12010-008-8347-4
  17. Ghorbel, R. E., A. Kamoun, M. Neifar, and S. E. Chaabouni. 2009. Optimization of new flour improver mixing formula by response surface methodology. J. Food Process Eng. 3: 234-256.
  18. Ghorbel, R. E., S. Maktouf, E. Ben Massoud, S. Bejar, and S. E. Chaabouni. 2009. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability. Appl. Biochem. Biotechnol. 157: 50-60. https://doi.org/10.1007/s12010-008-8278-0
  19. Goupy, J. 1999. Plans d'Experiences Pour Surfaces de Reponses. Dunod, Paris.
  20. Goyal, N., J. K. Gupta, and S. K. Soni. 2005. A novel raw starch digesting thermostable $\alpha$-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol. 37: 723-734. https://doi.org/10.1016/j.enzmictec.2005.04.017
  21. Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial alpha-amylases: A biotechnological perspective. Process Biochem. 38: 1599-1616. https://doi.org/10.1016/S0032-9592(03)00053-0
  22. Gurtler, V. A. and V. A. Stanish. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16. https://doi.org/10.1099/13500872-142-1-3
  23. Haq, I., H. Ashraf, M. A. Qadeer, and J. Iqbal. 2003. Production of alpha-amylase by Bacillus licheniformis using an economical medium. Bioresour. Technol. 87: 57-61. https://doi.org/10.1016/S0960-8524(02)00198-0
  24. Kamoun, A., B. Samet, J. Bouaziz, and M. Chaabouni. 1999. Application of a rotatable orthogonal central composite design to the optimization of the formulation and utilization of a useful plasticizer for cement. Analysis 27: 91-96. https://doi.org/10.1051/analusis:1999103
  25. Kelly, R. M., L. Dijkhuizen, and H. Leemhuis. 2009. Starch and α-glucan acting enzymes, modulating their properties by directed evolution. Biotechnol. J. 140: 184-193. https://doi.org/10.1016/j.jbiotec.2009.01.020
  26. Kikani, B. A. and S. P. Singh. 2011. Single step purification and characterization of a thermostable and calcium independent α- amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int. J. Biol. Macromol. 48: 676-681. https://doi.org/10.1016/j.ijbiomac.2011.02.010
  27. Kim, K. H., S. W. Suh, and M. U. Choi. 1991. Spectroscopic and electrophoretic studies on structural stability of alphaamylase from Bacillus amyloliquefaciens. Korean J. Biochem. 24: 158-167.
  28. Kunamneni, A., S. K. Kuttanpillai, and S. Suren. 2005. Response surface methodological approach to optimize the nutritional parameters for enhanced production of alpha-amylase in solid state fermentation by Thermomyces lanuginosus. Afr. J. Biotechnol. 4: 708-716.
  29. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  30. Lewis, G. A., D. Mathieu, and R. Phan-Tan-Luu. 1999. Pharmaceutical Experimental Design. Marcel Dekker, New York.
  31. Lin, L. L., C. C. Chyau, and W. H. Hsu. 1998. Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem. 28: 61-68.
  32. Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M.Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  33. Mathieu, D., J. Nony, and R. Phan-Tan-Luu. 2000. NEMRODW software. LPRAI, Marseille, France.
  34. Mitsuiki, S., K. Mukae, M. Sakai, M. Goto, S. Hayashida, and K. Furukawa. 2005. Comparative characterization of raw starch hydrolyzing $\alpha$-amylases from various Bacillus strains. Enzyme Microb. Technol. 37: 410-416. https://doi.org/10.1016/j.enzmictec.2005.02.022
  35. Mulimani, V. H. and G. N. Ramalingam Patil. 2000. Amylase production by solid state fermentation: A new practical approach to biotechnology courses. Biochem. Edu. 28: 161-163. https://doi.org/10.1016/S0307-4412(99)00145-4
  36. Natasa, B., J. Ruizb, J. López-Santínb, and Z. Vuj i . 2011. Production and properties of the highly efficient raw starch digesting $\alpha$-amylase from a Bacillus licheniformis ATCC 9945a. Biochem. Eng. J. 53: 203-209. https://doi.org/10.1016/j.bej.2010.10.014
  37. Okolo, B. N., L. I. Ezeogu, and C. N. Mba. 1995. Production of raw starch digesting amylase by Aspergillus niger grown on native starch sources. J. Sci. Food Agric. 69: 109-115. https://doi.org/10.1002/jsfa.2740690117
  38. Pandey, A., P. Nigam, C. Soccol, V. T. Sccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152. https://doi.org/10.1042/BA19990073
  39. Pandey, A., C. R. Soccol, and D. Mitchell. 2000. New developments in solid state fermentation: I. bioprocesses and products. Process Biochem. 35: 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7
  40. Puspasari, F., O. K. Radjasa, A. S. Noer, Z. Nurachman, Y. M. Syah, M. van der Maarel, et al. 2012. Raw starch-degrading $\alpha$- amylase from Bacillus aquimaris MKSC 6.2: Isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Appl. Microbiol. DOI: 10.1111/jam.12025(2012).
  41. Sarabia, L. A. and M. C. Ortiz. 2009. Response surface methodology. In S. D. Brown, R. Tauler, and B. Walczak (eds.). Comprehensive Chemometrics: Chemical and Biochemical Data Analysis. Elsevier.
  42. Shafiei, M., Z. Abed-Ali, and A. Mohammad Ali. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic $\alpha$- amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694-699. https://doi.org/10.1016/j.procbio.2010.01.003
  43. Singhania, E. E., A. K. Patel, C. R. Soccol, and A. Pandey. 2009. Recent advances in solid-state fermentation. Biochem. Eng. 44: 13-18. https://doi.org/10.1016/j.bej.2008.10.019
  44. Sumner, J. and S. A. Howell. 1935. Method for determination of invertase activity. J. Biol. Chem. 108: 51-54.

Cited by

  1. 1H NMR-based metabolomics approach for understanding the fermentation behaviour ofBacillus licheniformis : The fermentation behaviour ofB.Licheniformis vol.121, pp.3, 2015, https://doi.org/10.1002/jib.238
  2. Raw starch degrading α-amylases: an unsolved riddle vol.1, pp.1, 2013, https://doi.org/10.1515/amylase-2017-0002
  3. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé vol.100, pp.1, 2017, https://doi.org/10.1016/j.foodres.2017.06.059
  4. AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1432-9
  5. Novel Thermotolerant Amylase from Bacillus licheniformis Strain LB04: Purification, Characterization and Agar-Agarose vol.9, pp.9, 2013, https://doi.org/10.3390/microorganisms9091857