References
- Adeyanju, M. M., F. K. Agboola, B. O. Omfuvbe, O. H. Oyefuga, and O. O. Adebavo. 2007. A thermostable extracellular α-amylase from Bacillus licheniformis isolated from cassava steep water. Biotechnology 6: 473-480. https://doi.org/10.3923/biotech.2007.473.480
- American Association of Cereal Chemists (AACC). 2000. Approved Methods of the AACC, 10th Ed. Methods 46-30, 30-10, 44-19, 08-01. The American Association of Cereal Chemists, St. Paul, MN, USA.
- Anto, H., U. Trivedi, and K. Patel. 2006. Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Food Technol. Biotechnol. 44: 241-245.
- Arikan, B. 2008. Highly thermostable, thermophilic, alkaline, SDS and chelating resistant amylase from thermophilic Bacillus isolate A3-15. Bioresour. Technol. 99: 3071-3076.
- Asgher, M., M. J. Asad, S. U. Rahman, and R. L. Legge. 2007. A thermostable amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950-955. https://doi.org/10.1016/j.jfoodeng.2005.12.053
- Ashis, K., M. B. Mukherjee, and R. K. Sudhir. 2009. To study the influence of different components of fermentable substrates on induction of extracellular alpha amylase synthesis by Bacillus subtilis DM-03 in solid state fermentation and exploration of feasibility for inclusion of alpha amylase in laundry detergent formulations. Biochem. Eng. J. 43: 149-156. https://doi.org/10.1016/j.bej.2008.09.011
- Baysal, Z., F. Uyar, and C. Aytekin. 2003. Solid-state fermentation for production of alpha-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 38: 1665- 1668.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Dettori, B. G., F. G. Priest, and J. R Stark. 1992. Hydrolysis of starch granules by the amylase from Bacillus stearothermophilus NCA 26. Process Biochem. 27: 17-21. https://doi.org/10.1016/0032-9592(92)80004-M
- Dhayna, G., S. Sivaramakrishnan, K. M. Nampoothiri, and A. Pandey. 2006. Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol. Biotechnol. 44: 269-274.
- Doehlert, D. H. 1970. Uniform shell designs. Appl. Stat. 19: 231-239 https://doi.org/10.2307/2346327
- Dubois, M., K. A Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
- Duedahl-Olesen, L., K. M. Kragh, and W. Zimmermann. 2000. Purification and characterization of a malto-oligosaccharideforming amylase active at high pH from Bacillus clausii BT-21. Carbohydr. Res. 329: 97-107. https://doi.org/10.1016/S0008-6215(00)00153-1
- Egelseer, E., I. Schocher, and M. Sara. 1995. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J. Bacteriol. 177: 1444-1451.
- Ellaiah, P., K. Adinarayana, Y. Bhavani, P. Padmaja, and B. Srinivasulu. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620. https://doi.org/10.1016/S0032-9592(02)00188-7
- Gangadaharan, D., K. M. Nampoothiri, S. Shivaramakrishnan, and A. Pandey. 2009. Biochemical characterization of raw-starchdigesting alpha amylase purified from Bacillus amyloliquefaciens. Appl. Biochem. Biotechnol. 158: 653-662. https://doi.org/10.1007/s12010-008-8347-4
- Ghorbel, R. E., A. Kamoun, M. Neifar, and S. E. Chaabouni. 2009. Optimization of new flour improver mixing formula by response surface methodology. J. Food Process Eng. 3: 234-256.
- Ghorbel, R. E., S. Maktouf, E. Ben Massoud, S. Bejar, and S. E. Chaabouni. 2009. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability. Appl. Biochem. Biotechnol. 157: 50-60. https://doi.org/10.1007/s12010-008-8278-0
- Goupy, J. 1999. Plans d'Experiences Pour Surfaces de Reponses. Dunod, Paris.
-
Goyal, N., J. K. Gupta, and S. K. Soni. 2005. A novel raw starch digesting thermostable
$\alpha$ -amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol. 37: 723-734. https://doi.org/10.1016/j.enzmictec.2005.04.017 - Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial alpha-amylases: A biotechnological perspective. Process Biochem. 38: 1599-1616. https://doi.org/10.1016/S0032-9592(03)00053-0
- Gurtler, V. A. and V. A. Stanish. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16. https://doi.org/10.1099/13500872-142-1-3
- Haq, I., H. Ashraf, M. A. Qadeer, and J. Iqbal. 2003. Production of alpha-amylase by Bacillus licheniformis using an economical medium. Bioresour. Technol. 87: 57-61. https://doi.org/10.1016/S0960-8524(02)00198-0
- Kamoun, A., B. Samet, J. Bouaziz, and M. Chaabouni. 1999. Application of a rotatable orthogonal central composite design to the optimization of the formulation and utilization of a useful plasticizer for cement. Analysis 27: 91-96. https://doi.org/10.1051/analusis:1999103
- Kelly, R. M., L. Dijkhuizen, and H. Leemhuis. 2009. Starch and α-glucan acting enzymes, modulating their properties by directed evolution. Biotechnol. J. 140: 184-193. https://doi.org/10.1016/j.jbiotec.2009.01.020
- Kikani, B. A. and S. P. Singh. 2011. Single step purification and characterization of a thermostable and calcium independent α- amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int. J. Biol. Macromol. 48: 676-681. https://doi.org/10.1016/j.ijbiomac.2011.02.010
- Kim, K. H., S. W. Suh, and M. U. Choi. 1991. Spectroscopic and electrophoretic studies on structural stability of alphaamylase from Bacillus amyloliquefaciens. Korean J. Biochem. 24: 158-167.
- Kunamneni, A., S. K. Kuttanpillai, and S. Suren. 2005. Response surface methodological approach to optimize the nutritional parameters for enhanced production of alpha-amylase in solid state fermentation by Thermomyces lanuginosus. Afr. J. Biotechnol. 4: 708-716.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lewis, G. A., D. Mathieu, and R. Phan-Tan-Luu. 1999. Pharmaceutical Experimental Design. Marcel Dekker, New York.
- Lin, L. L., C. C. Chyau, and W. H. Hsu. 1998. Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem. 28: 61-68.
- Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M.Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
- Mathieu, D., J. Nony, and R. Phan-Tan-Luu. 2000. NEMRODW software. LPRAI, Marseille, France.
-
Mitsuiki, S., K. Mukae, M. Sakai, M. Goto, S. Hayashida, and K. Furukawa. 2005. Comparative characterization of raw starch hydrolyzing
$\alpha$ -amylases from various Bacillus strains. Enzyme Microb. Technol. 37: 410-416. https://doi.org/10.1016/j.enzmictec.2005.02.022 - Mulimani, V. H. and G. N. Ramalingam Patil. 2000. Amylase production by solid state fermentation: A new practical approach to biotechnology courses. Biochem. Edu. 28: 161-163. https://doi.org/10.1016/S0307-4412(99)00145-4
-
Natasa, B., J. Ruizb, J. López-Santínb, and Z. Vuj i . 2011. Production and properties of the highly efficient raw starch digesting
$\alpha$ -amylase from a Bacillus licheniformis ATCC 9945a. Biochem. Eng. J. 53: 203-209. https://doi.org/10.1016/j.bej.2010.10.014 - Okolo, B. N., L. I. Ezeogu, and C. N. Mba. 1995. Production of raw starch digesting amylase by Aspergillus niger grown on native starch sources. J. Sci. Food Agric. 69: 109-115. https://doi.org/10.1002/jsfa.2740690117
- Pandey, A., P. Nigam, C. Soccol, V. T. Sccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152. https://doi.org/10.1042/BA19990073
- Pandey, A., C. R. Soccol, and D. Mitchell. 2000. New developments in solid state fermentation: I. bioprocesses and products. Process Biochem. 35: 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7
-
Puspasari, F., O. K. Radjasa, A. S. Noer, Z. Nurachman, Y. M. Syah, M. van der Maarel, et al. 2012. Raw starch-degrading
$\alpha$ - amylase from Bacillus aquimaris MKSC 6.2: Isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Appl. Microbiol. DOI: 10.1111/jam.12025(2012). - Sarabia, L. A. and M. C. Ortiz. 2009. Response surface methodology. In S. D. Brown, R. Tauler, and B. Walczak (eds.). Comprehensive Chemometrics: Chemical and Biochemical Data Analysis. Elsevier.
-
Shafiei, M., Z. Abed-Ali, and A. Mohammad Ali. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic
$\alpha$ - amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694-699. https://doi.org/10.1016/j.procbio.2010.01.003 - Singhania, E. E., A. K. Patel, C. R. Soccol, and A. Pandey. 2009. Recent advances in solid-state fermentation. Biochem. Eng. 44: 13-18. https://doi.org/10.1016/j.bej.2008.10.019
- Sumner, J. and S. A. Howell. 1935. Method for determination of invertase activity. J. Biol. Chem. 108: 51-54.
Cited by
- 1H NMR-based metabolomics approach for understanding the fermentation behaviour ofBacillus licheniformis : The fermentation behaviour ofB.Licheniformis vol.121, pp.3, 2015, https://doi.org/10.1002/jib.238
- Raw starch degrading α-amylases: an unsolved riddle vol.1, pp.1, 2013, https://doi.org/10.1515/amylase-2017-0002
- Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé vol.100, pp.1, 2017, https://doi.org/10.1016/j.foodres.2017.06.059
- AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1432-9
- Novel Thermotolerant Amylase from Bacillus licheniformis Strain LB04: Purification, Characterization and Agar-Agarose vol.9, pp.9, 2013, https://doi.org/10.3390/microorganisms9091857