DOI QR코드

DOI QR Code

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu (Department of Chemical Engineering, Tsinghua University) ;
  • Tang, Cheng (Department of Chemical Engineering, Tsinghua University) ;
  • Yang, Huan (Department of Chemical Engineering, Tsinghua University) ;
  • Yu, Huimin (Department of Chemical Engineering, Tsinghua University) ;
  • Chen, Yu (Department of Chemical Engineering, Tsinghua University) ;
  • Shen, Zhongyao (Department of Chemical Engineering, Tsinghua University)
  • Received : 2012.09.07
  • Accepted : 2012.11.07
  • Published : 2013.03.28

Abstract

Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

Keywords

References

  1. Abbasi, H., M. M. Hamedi, T. B. Lotfabad, H. S. Zahiri, H. Sharafi, F. Masoomi, et al. 2012. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 113: 211-219.
  2. Abdel-Mawgoud, A. M., M. M. Aboulwafa, and N. Abdel- Haleem Hassouna. 2008. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 150: 289-303. https://doi.org/10.1007/s12010-008-8153-z
  3. Amezcua-Vega, C., H. M. Poggi-Varaldo, F. Esparza-Garcia, E. Rios-Leal, and R. Rodriguez-Vazquez. 2007. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour. Technol. 98: 237-240. https://doi.org/10.1016/j.biortech.2005.11.025
  4. Anna, L. M. S., A. U. Soriano, A. C. Gomes, E. P. Menezes, M. L. E. Gutarr, D. M. G. Freire, and N. Pereira. 2007. Use of biosurfactant in the removal of oil from contaminated sandy soil. J. Chem. Technol. Biotechnol. 82: 687-691. https://doi.org/10.1002/jctb.1741
  5. Banat, I. M., R. S. Makkar, and S. S. Cameotra. 2000. Potential applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508. https://doi.org/10.1007/s002530051648
  6. Bergström, S., H. Theorell, and H. Davide. 1947. On a metabolic product of Ps. pyocyanea, pyolipic acid, active against Myobact. tuberculosis. Ark. Kem. Mineral. Geol. 23: 1-12.
  7. Cassidy, D. P. and A. J. Hudak. 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J. Hazard. Mater. 84: 253-264. https://doi.org/10.1016/S0304-3894(01)00242-4
  8. Das, P., S. Mukherjee, and R. Sen. 2008. Genetic regulations of the biosynthesis of microbial surfactants: An overview. Biotechnol. Genet. Eng. Rev. 25: 165-185. https://doi.org/10.5661/bger-25-165
  9. Dusane, D. H., V. S. Pawar, Y. V. Nancharaiah, V. P. Venugopalan, A. R. Kumar, and S. S. Zinjarde. 2011. Antibiofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27: 645-654. https://doi.org/10.1080/08927014.2011.594883
  10. Haba, E., A. Pinazo, O. Jauregui, M. Espuny, M. R. Infante, and A. Manresa. 2003. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 81: 316-322. https://doi.org/10.1002/bit.10474
  11. Iglauer, S., Y. Wu, P. Shuler, Y. Tang, and W. A. Goddard III. 2010. New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J. Petrol. Sci. Eng. 71: 23-29. https://doi.org/10.1016/j.petrol.2009.12.009
  12. Janek, T., M. Lukaszewicz, T. Rezanka, and A. Krasowska. 2010. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol. 101: 6118-6123. https://doi.org/10.1016/j.biortech.2010.02.109
  13. Jarvis, F. G. and M. J. Johnson. 1949. A glycolipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71: 4124-4126. https://doi.org/10.1021/ja01180a073
  14. Kim, P. I., J. Ryu, Y. H. Kim, and Y. T. Chi. 2010. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20: 138-145.
  15. Kiran, G. S., T. A. Thomas, J. Selvin, B. Sabarathnam, and A. P. Lipton. 2010. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour. Technol. 101: 2389-2396. https://doi.org/10.1016/j.biortech.2009.11.023
  16. Mageshwaran, V., S. Walia, and K. Annapurna. 2012. Isolation and partial characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5. World J. Microbiol. Biotechnol. 28: 909-917. https://doi.org/10.1007/s11274-011-0888-y
  17. Nie, M., X. Yin, C. Ren, Y. Wang, F. Xu, and Q. Shen. 2010. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol. Adv. 28: 635-643. https://doi.org/10.1016/j.biotechadv.2010.05.013
  18. Ongena, M. and P. Jacques. 2008. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  19. Onwosi, C. O. and F. J. C. Odibo. 2012. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J. Microbiol. Biotechnol. 28: 937-942. https://doi.org/10.1007/s11274-011-0891-3
  20. Pemmaraju, S. C., D. Sharma, N. Singh, R. Panwar, S. S. Cameotra, and V. Pruthi. 2012. Production of microbial surfactants from oily sludge-contaminated soil by Bacillus subtilis DSVP23. Appl. Biochem. Biotechnol. 167: 1119-1131. https://doi.org/10.1007/s12010-012-9613-z
  21. Ron, E. Z. and E. Rosenberg. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229-236. https://doi.org/10.1046/j.1462-2920.2001.00190.x
  22. Roongsawang, N., K. Washio, and M. Morikawa. 2010. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci. 12: 141-172. https://doi.org/10.3390/ijms12010141
  23. Sen, R. 2010. Biosurfactants, pp. 316-322. Landes Bioscience / Springer Science +Business Media, LLC dual imprint, USA.
  24. Seydlová, G. and J. Svobodová. 2008. Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med. 3: 123-133. https://doi.org/10.2478/s11536-008-0002-5
  25. Sneath, P. H. A., N. S. Mair, and M. E. Sharpe. 1986. Bergey's Manual of Systematic Bacteriology, Vol. 2. The Proteobacteria, pp. 999-1436. Williams & Wilkins, Baltimore.
  26. Urum, K., T. Pekdemir, and M. Copur. 2004. Surfactants treatment of crude oil contaminated soils. J. Colloid Interface Sci. 276: 456-464. https://doi.org/10.1016/j.jcis.2004.03.057
  27. Vater, J., B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S. S. Cameotra. 2002. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68: 6210- 6219. https://doi.org/10.1128/AEM.68.12.6210-6219.2002
  28. Wang, Q. H., X. D. Fang, B. J. Bai, X. L. Liang, P. J. Shuler, W. A. Goddard, and Y. C. Tang. 2007. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol. Bioeng. 98: 842-853. https://doi.org/10.1002/bit.21462
  29. Yanagi, M. and K. Yamasato. 1993. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107: 115-120. https://doi.org/10.1111/j.1574-6968.1993.tb06014.x
  30. Zhang, T. 2005. Biosurfactant and Its Applications, pp. 1-11. Chemical Industry Press, Beijing, China.

Cited by

  1. Biosurfactant production and characterization of Bacillus sp. ZG0427 isolated from oil-contaminated soil vol.65, pp.4, 2013, https://doi.org/10.1007/s13213-015-1066-5
  2. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil vol.107, pp.1, 2013, https://doi.org/10.1016/j.marpolbul.2016.04.025
  3. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review vol.37, pp.3, 2017, https://doi.org/10.3109/07388551.2016.1163324
  4. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters vol.114, pp.4, 2017, https://doi.org/10.1002/bit.26197
  5. Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for 2013–2014 vol.37, pp.4, 2018, https://doi.org/10.1002/mas.21530
  6. Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery vol.307, pp.None, 2013, https://doi.org/10.1016/j.jclepro.2021.127193
  7. Micellar Antibiotics of Bacillus vol.13, pp.8, 2013, https://doi.org/10.3390/pharmaceutics13081296