참고문헌
- Aidoo, K. E., R. Handry, and B. J. B Wood. 1981. Estimation of fungal growth in a solid state fermentation system. Eur. J. Appl. Microbiol. Biotechnol. 12: 6-9. https://doi.org/10.1007/BF00508111
- Aparecida, S., G. Mossini, and C. Kemmelmeier. 2008. Inhibition of citrinin production in Penicillium citrinum cultures by neem [Azadirachta indica A. Juss (Meliaceae)]. Int. J. Mol. Sci. 9: 1676-1684. https://doi.org/10.3390/ijms9091676
- Babitha, S., J. C. Carvaho, C. R. Soccol, and A. Pandey. 2008. Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J. Microbiol. Biotechnol. 24: 2671-2675. https://doi.org/10.1007/s11274-008-9794-3
- Blanc, P. J., M. O. Loret, and G. Goma. 1995. Production of citrinin by various species of Monascus. Biotechnol. Lett. 3: 291-294.
- Bouillaud, F. and F. Blachier. 2011. Mitochondria and sulfide: A very old story of poisoning, feeding, and signaling. Antioxid. Redox Signal. 15: 379-391. https://doi.org/10.1089/ars.2010.3678
- Chen, F. and X. Hu. 2005. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int. J. Food Microbiol. 103: 331-337. https://doi.org/10.1016/j.ijfoodmicro.2005.03.002
- Chen, M. H. and M. R. Johns. 1993. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 40: 132-138.
- Chen, M. H. and M. R. Johns. 1994. Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb. Technol. 16: 584-590. https://doi.org/10.1016/0141-0229(94)90123-6
- Chung, C. C., T. C. Huang, and H. H. Chen. 2009. The optimization of Monascus fermentation process for pigments increment and citrinin reduction, pp. 77-83. 9th IEEE International Conference on Bioinformatics and Bioengineering.
- Czyzewski, B. K. and D. N. Wang. 2012. Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483: 494-498. https://doi.org/10.1038/nature10881
- Demain, A. L. 1986. Regulation of secondary metabolism in fungi. Pure Appl. Chem. 58: 219-226. https://doi.org/10.1351/pac198658020219
- González, J. B. and R. U. Miranda. 2010. Biotechnological production and applications of statins. Appl. Microbiol. Biotechnol. 85: 869-883. https://doi.org/10.1007/s00253-009-2239-6
- Hajjaj, H., A. Klaebe, G. Goma, P. J. Blanc, E. Barbier, and J. Francois. 2000. Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl. Environ. Microbiol. 66: 1120-1125. https://doi.org/10.1128/AEM.66.3.1120-1125.2000
- Hajjaj, H., A. Klaebe, M. O. Loret, G. Goma, P. J. Blanc, and J. Francois. 1999. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl. Environ. Microbiol. 65: 311-314.
- Harry, M. J., P. S. Mann, O. C. D. Hodgins, R. L. Hulbert, and C. J. Lacke. 2010. Practition's Guide to Statistics and Lean Six Sigma for Process Improvements. John Wiley & Sons, New Jersey.
- Jirasatid, S., M. Nopharatana, and A. Tongta. 2006. Effect of degree of gelatinization of rice on growth and pigments production of Monascus purpureus. 8th Food Innovation Asia Conference, Bangkok.
- Juzlova, P., L. Martinkova, and V. Kren. 1996. Secondary metabolites of the fungus Monascus: A review. J. Ind. Microbiol. 16: 163-170. https://doi.org/10.1007/BF01569999
- Lee, C. L., Y. H. Kung, C.L. Wu, Y. W. Hsu, and T. M. Pan. 2010. Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J. Agric. Food Chem. 58: 9013-9019. https://doi.org/10.1021/jf101982v
- Lee, C. L., J. J. Wang, S. L. Kuon, and T. M. Pan. 2006. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent-monacolin K and antiinflamation agent-monascin. Appl. Microbiol. Biotechnol. 72: 1254-1262. https://doi.org/10.1007/s00253-006-0404-8
- Lin, C. F. 1973. Isolation and culture conditions of Monascus sp. for the production of pigment in a submerged culture. J. Ferment. Technol. 51: 407-414.
- Liu, J., J. Xing, T. Chang, Z. Ma, and H. Liu. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental method. Process Biochem. 40: 2757-2762. https://doi.org/10.1016/j.procbio.2004.12.025
- Manzoni, M. and M. Rollini. 2002. Biosynthesis and biotechnology production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58: 555-564. https://doi.org/10.1007/s00253-002-0932-9
- Miyake, T., A. Mori, T. Kii, T. Okuno, Y. Usui, F. Sato, et al. 2005. Light effects on cell development and secondary metabolism in Monascus. J. Ind. Microbiol. Biotechnol. 32: 103-108. https://doi.org/10.1007/s10295-005-0209-2
-
Moore, R. N., G. Bigam, J. K. Chan, A. M. Hoog, T. T. Nakashima, and J. C. Vederas. 1985. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by
$^{13}C$ NMR and mass spectroscopy. J. Am. Chem. Soc. 107: 3694-3701. https://doi.org/10.1021/ja00298a046 - Panda, B. P., S. Javed, and M. Ali. 2009. Statistical analysis and validation of process parameters influencing lovastatin production by Monascus purpureus MTCC 369 under solid-state fermentation. Biotechnol. Bioproc. Eng. 14: 123-127. https://doi.org/10.1007/s12257-008-0016-5
- Panda, B. P., S. Javed, and M. Ali. 2010. Optimization of fermentation parameters for higher monacolin K production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food Bioproc. Technol. 3: 373-378. https://doi.org/10.1007/s11947-008-0072-z
- Pattanagul, P., R. Pinthong, A. Phianmongkhol, and S. Tharatha. 2008. Mevinolin, citrinin and pigments of adlay angkok fermented by Monascus sp. Int. J. Food Microbiol. 126: 20-23. https://doi.org/10.1016/j.ijfoodmicro.2008.04.019
- Rani, M. U., N. K. Rastogi, and K. A. Ann Appaiah. 2011. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract - an agro-industry waste. J. Microbiol. Biotechnol. 21: 739-745. https://doi.org/10.4014/jmb.1012.12026
- Rodriguez-Duran, L. V., J. C. Contreras-Esquivel, R. Rodriguez, A. Prado-Barragan, and C. N. Aguilar. 2011. Optimization of tannase production by Aspergillus niger in solid-state packedbed bioreactor. J. Microbiol. Biotechnol. 21: 960-967. https://doi.org/10.4014/jmb.1103.03025
- Sanchez, S. and A. Demain. 2002. Metabolic regulation of fermentation processes. Enzyme Microb. Technol. 31: 895-906. https://doi.org/10.1016/S0141-0229(02)00172-2
- Seraman, S., A. Rajendran, and V. Thangavelu. 2010. Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food Bioprod. Proc. 88: 266-276. https://doi.org/10.1016/j.fbp.2010.01.006
- Su, Y. C., J. J. Wang, T. T. Lin, and T. M. Pan. 2003. Production of the secondary metabolites g-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
- Su, Y. C., Y. L. Lin, M. H. Lee, and C. Y. Ho. 2005. Ankaflavin from Monacus-fermented red yeast rice exhibits selective cytotoxic effects and increase cell death on HepG2 cells. J. Agric. Food Chem. 53: 1949-1954. https://doi.org/10.1021/jf048310e
- Teng, S. S. and W. Feldheim. 2000. The fermentation of rice for anka pigment production. J. Ind. Microbiol. Biotechnol. 25: 141-146. https://doi.org/10.1038/sj.jim.7000044
- Teng, S. S. and W. Feldheim. 2001. Anka and anka pigment production. J. Ind. Microbiol. Biotechnol. 26: 280-282. https://doi.org/10.1038/sj.jim.7000126
- Vazquez, B. I., C. Fente, C. M. Franco, M. J. Vazquez, and A. Cepeda. 2001. Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. Int. J. Food Microbiol. 67: 157-163. https://doi.org/10.1016/S0168-1605(01)00429-9
- Wang, J. J., C. L. Lee, and T. M. Pan. 2003. Improvement of monacolin K, g-amino butyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J. Ind. Microbiol. Biotechnol. 33: 669-676.
- Wang, J. J., C. L. Lee, and T. M. Pan. 2004. Modified mutation method for screening low citrinin-producing strain of Monascus pupureus on rice culture. J. Agric. Food Chem. 52: 6977-6982. https://doi.org/10.1021/jf049783o
- Wang, Z. W. and X. L. Liu. 2008. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour. Technol. 99: 8245-8251. https://doi.org/10.1016/j.biortech.2008.03.039
- Xu, B. J., Q. W. Wang, X. Q. Jia, and C. K. Sung. 2005. Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol. Bioproc. Eng. 10: 78-84. https://doi.org/10.1007/BF02931187
- Yongsmith, B., V. Kitprechavanich, L. Chitradon, C. Chaisrisook, and N. Budda. 2000. Color mutants of Monascus sp. KB9 and their comparative glucoamylase on rice solid culture. J. Mol. Catal. B Enz. 10: 263-272. https://doi.org/10.1016/S1381-1177(00)00109-0
피인용 문헌
- Fermentation and quality of yellow pigments from golden brown rice solid culture by a selected Monascus mutant vol.97, pp.20, 2013, https://doi.org/10.1007/s00253-013-5106-4
- Enhancement of antioxidant activity of monascal waxy corn by a 2‐step fermentation vol.49, pp.7, 2013, https://doi.org/10.1111/ijfs.12479
- Effect of the cultivation mode on red pigments production from Monascus ruber vol.50, pp.8, 2015, https://doi.org/10.1111/ijfs.12803
- A soil bacterium Rhizobium borbori and its potential for citrinin-degrading application vol.66, pp.2, 2013, https://doi.org/10.1007/s13213-015-1167-1
- Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus vol.24, pp.2, 2013, https://doi.org/10.1016/j.jfda.2015.11.008
- Application of red pigment producing edible fungi for development of a novel type of functional cheese vol.42, pp.10, 2018, https://doi.org/10.1111/jfpp.13707
- Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus vol.103, pp.13, 2013, https://doi.org/10.1007/s00253-019-09752-9
- An overview of Monascus fermentation processes for monacolin K production vol.18, pp.1, 2013, https://doi.org/10.1515/chem-2020-0006
- An overview of Monascus fermentation processes for monacolin K production vol.18, pp.1, 2013, https://doi.org/10.1515/chem-2020-0006
- An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin vol.11, pp.7, 2020, https://doi.org/10.1039/d0fo00691b