DOI QR코드

DOI QR Code

Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation

  • Jirasatid, Sani (Division of Biotechnology, School of Bioresources and Technology) ;
  • Nopharatana, Montira (Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi) ;
  • Kitsubun, Panit (Biochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi) ;
  • Vichitsoonthonkul, Taweerat (Division of Biotechnology, School of Bioresources and Technology) ;
  • Tongta, Anan (Division of Biotechnology, School of Bioresources and Technology)
  • 투고 : 2012.06.27
  • 심사 : 2012.11.16
  • 발행 : 2013.03.28

초록

Monacolin K and yellow pigment, produced by Monascus sp., have each been proven to be beneficial compounds as antihypercholesterolemic and anti-inflammation agents, respectively. However, citrinin, a human toxic substance, was also synthesized in this fungus. In this research, solidstate fermentation of M. purpureus TISTR 3541 was optimized by statistical methodology to obtain a high production of monacolin K and yellow pigment along with a low level of citrinin. Fractional factorial design was applied in this study to identify the significant factors. Among the 13 variables, five parameters (i.e., glycerol, methionine, sodium nitrate, cultivation time, and temperature) influencing monacolin K, yellow pigment, and citrinin production were identified. A central composite design was further employed to investigate the optimum level of these five factors. The maximum production of monacolin K and yellow pigment of 5,900 mg/kg and 1,700 units/g, respectively, and the minimum citrinin concentration of 0.26 mg/kg were achieved in the medium containing 2% glycerol, 0.14% methionine, and 0.01% sodium nitrate at $25^{\circ}C$ for 16 days of cultivation. The yields of monacolin K and yellow pigment were about 3 and 1.5 times higher than the basal medium, respectively, whereas citrinin was dramatically reduced by 36 times.

키워드

참고문헌

  1. Aidoo, K. E., R. Handry, and B. J. B Wood. 1981. Estimation of fungal growth in a solid state fermentation system. Eur. J. Appl. Microbiol. Biotechnol. 12: 6-9. https://doi.org/10.1007/BF00508111
  2. Aparecida, S., G. Mossini, and C. Kemmelmeier. 2008. Inhibition of citrinin production in Penicillium citrinum cultures by neem [Azadirachta indica A. Juss (Meliaceae)]. Int. J. Mol. Sci. 9: 1676-1684. https://doi.org/10.3390/ijms9091676
  3. Babitha, S., J. C. Carvaho, C. R. Soccol, and A. Pandey. 2008. Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J. Microbiol. Biotechnol. 24: 2671-2675. https://doi.org/10.1007/s11274-008-9794-3
  4. Blanc, P. J., M. O. Loret, and G. Goma. 1995. Production of citrinin by various species of Monascus. Biotechnol. Lett. 3: 291-294.
  5. Bouillaud, F. and F. Blachier. 2011. Mitochondria and sulfide: A very old story of poisoning, feeding, and signaling. Antioxid. Redox Signal. 15: 379-391. https://doi.org/10.1089/ars.2010.3678
  6. Chen, F. and X. Hu. 2005. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int. J. Food Microbiol. 103: 331-337. https://doi.org/10.1016/j.ijfoodmicro.2005.03.002
  7. Chen, M. H. and M. R. Johns. 1993. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 40: 132-138.
  8. Chen, M. H. and M. R. Johns. 1994. Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb. Technol. 16: 584-590. https://doi.org/10.1016/0141-0229(94)90123-6
  9. Chung, C. C., T. C. Huang, and H. H. Chen. 2009. The optimization of Monascus fermentation process for pigments increment and citrinin reduction, pp. 77-83. 9th IEEE International Conference on Bioinformatics and Bioengineering.
  10. Czyzewski, B. K. and D. N. Wang. 2012. Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483: 494-498. https://doi.org/10.1038/nature10881
  11. Demain, A. L. 1986. Regulation of secondary metabolism in fungi. Pure Appl. Chem. 58: 219-226. https://doi.org/10.1351/pac198658020219
  12. González, J. B. and R. U. Miranda. 2010. Biotechnological production and applications of statins. Appl. Microbiol. Biotechnol. 85: 869-883. https://doi.org/10.1007/s00253-009-2239-6
  13. Hajjaj, H., A. Klaebe, G. Goma, P. J. Blanc, E. Barbier, and J. Francois. 2000. Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl. Environ. Microbiol. 66: 1120-1125. https://doi.org/10.1128/AEM.66.3.1120-1125.2000
  14. Hajjaj, H., A. Klaebe, M. O. Loret, G. Goma, P. J. Blanc, and J. Francois. 1999. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl. Environ. Microbiol. 65: 311-314.
  15. Harry, M. J., P. S. Mann, O. C. D. Hodgins, R. L. Hulbert, and C. J. Lacke. 2010. Practition's Guide to Statistics and Lean Six Sigma for Process Improvements. John Wiley & Sons, New Jersey.
  16. Jirasatid, S., M. Nopharatana, and A. Tongta. 2006. Effect of degree of gelatinization of rice on growth and pigments production of Monascus purpureus. 8th Food Innovation Asia Conference, Bangkok.
  17. Juzlova, P., L. Martinkova, and V. Kren. 1996. Secondary metabolites of the fungus Monascus: A review. J. Ind. Microbiol. 16: 163-170. https://doi.org/10.1007/BF01569999
  18. Lee, C. L., Y. H. Kung, C.L. Wu, Y. W. Hsu, and T. M. Pan. 2010. Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J. Agric. Food Chem. 58: 9013-9019. https://doi.org/10.1021/jf101982v
  19. Lee, C. L., J. J. Wang, S. L. Kuon, and T. M. Pan. 2006. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent-monacolin K and antiinflamation agent-monascin. Appl. Microbiol. Biotechnol. 72: 1254-1262. https://doi.org/10.1007/s00253-006-0404-8
  20. Lin, C. F. 1973. Isolation and culture conditions of Monascus sp. for the production of pigment in a submerged culture. J. Ferment. Technol. 51: 407-414.
  21. Liu, J., J. Xing, T. Chang, Z. Ma, and H. Liu. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental method. Process Biochem. 40: 2757-2762. https://doi.org/10.1016/j.procbio.2004.12.025
  22. Manzoni, M. and M. Rollini. 2002. Biosynthesis and biotechnology production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58: 555-564. https://doi.org/10.1007/s00253-002-0932-9
  23. Miyake, T., A. Mori, T. Kii, T. Okuno, Y. Usui, F. Sato, et al. 2005. Light effects on cell development and secondary metabolism in Monascus. J. Ind. Microbiol. Biotechnol. 32: 103-108. https://doi.org/10.1007/s10295-005-0209-2
  24. Moore, R. N., G. Bigam, J. K. Chan, A. M. Hoog, T. T. Nakashima, and J. C. Vederas. 1985. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by $^{13}C$ NMR and mass spectroscopy. J. Am. Chem. Soc. 107: 3694-3701. https://doi.org/10.1021/ja00298a046
  25. Panda, B. P., S. Javed, and M. Ali. 2009. Statistical analysis and validation of process parameters influencing lovastatin production by Monascus purpureus MTCC 369 under solid-state fermentation. Biotechnol. Bioproc. Eng. 14: 123-127. https://doi.org/10.1007/s12257-008-0016-5
  26. Panda, B. P., S. Javed, and M. Ali. 2010. Optimization of fermentation parameters for higher monacolin K production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food Bioproc. Technol. 3: 373-378. https://doi.org/10.1007/s11947-008-0072-z
  27. Pattanagul, P., R. Pinthong, A. Phianmongkhol, and S. Tharatha. 2008. Mevinolin, citrinin and pigments of adlay angkok fermented by Monascus sp. Int. J. Food Microbiol. 126: 20-23. https://doi.org/10.1016/j.ijfoodmicro.2008.04.019
  28. Rani, M. U., N. K. Rastogi, and K. A. Ann Appaiah. 2011. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract - an agro-industry waste. J. Microbiol. Biotechnol. 21: 739-745. https://doi.org/10.4014/jmb.1012.12026
  29. Rodriguez-Duran, L. V., J. C. Contreras-Esquivel, R. Rodriguez, A. Prado-Barragan, and C. N. Aguilar. 2011. Optimization of tannase production by Aspergillus niger in solid-state packedbed bioreactor. J. Microbiol. Biotechnol. 21: 960-967. https://doi.org/10.4014/jmb.1103.03025
  30. Sanchez, S. and A. Demain. 2002. Metabolic regulation of fermentation processes. Enzyme Microb. Technol. 31: 895-906. https://doi.org/10.1016/S0141-0229(02)00172-2
  31. Seraman, S., A. Rajendran, and V. Thangavelu. 2010. Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food Bioprod. Proc. 88: 266-276. https://doi.org/10.1016/j.fbp.2010.01.006
  32. Su, Y. C., J. J. Wang, T. T. Lin, and T. M. Pan. 2003. Production of the secondary metabolites g-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
  33. Su, Y. C., Y. L. Lin, M. H. Lee, and C. Y. Ho. 2005. Ankaflavin from Monacus-fermented red yeast rice exhibits selective cytotoxic effects and increase cell death on HepG2 cells. J. Agric. Food Chem. 53: 1949-1954. https://doi.org/10.1021/jf048310e
  34. Teng, S. S. and W. Feldheim. 2000. The fermentation of rice for anka pigment production. J. Ind. Microbiol. Biotechnol. 25: 141-146. https://doi.org/10.1038/sj.jim.7000044
  35. Teng, S. S. and W. Feldheim. 2001. Anka and anka pigment production. J. Ind. Microbiol. Biotechnol. 26: 280-282. https://doi.org/10.1038/sj.jim.7000126
  36. Vazquez, B. I., C. Fente, C. M. Franco, M. J. Vazquez, and A. Cepeda. 2001. Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. Int. J. Food Microbiol. 67: 157-163. https://doi.org/10.1016/S0168-1605(01)00429-9
  37. Wang, J. J., C. L. Lee, and T. M. Pan. 2003. Improvement of monacolin K, g-amino butyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J. Ind. Microbiol. Biotechnol. 33: 669-676.
  38. Wang, J. J., C. L. Lee, and T. M. Pan. 2004. Modified mutation method for screening low citrinin-producing strain of Monascus pupureus on rice culture. J. Agric. Food Chem. 52: 6977-6982. https://doi.org/10.1021/jf049783o
  39. Wang, Z. W. and X. L. Liu. 2008. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour. Technol. 99: 8245-8251. https://doi.org/10.1016/j.biortech.2008.03.039
  40. Xu, B. J., Q. W. Wang, X. Q. Jia, and C. K. Sung. 2005. Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol. Bioproc. Eng. 10: 78-84. https://doi.org/10.1007/BF02931187
  41. Yongsmith, B., V. Kitprechavanich, L. Chitradon, C. Chaisrisook, and N. Budda. 2000. Color mutants of Monascus sp. KB9 and their comparative glucoamylase on rice solid culture. J. Mol. Catal. B Enz. 10: 263-272. https://doi.org/10.1016/S1381-1177(00)00109-0

피인용 문헌

  1. Fermentation and quality of yellow pigments from golden brown rice solid culture by a selected Monascus mutant vol.97, pp.20, 2013, https://doi.org/10.1007/s00253-013-5106-4
  2. Enhancement of antioxidant activity of monascal waxy corn by a 2‐step fermentation vol.49, pp.7, 2013, https://doi.org/10.1111/ijfs.12479
  3. Effect of the cultivation mode on red pigments production from Monascus ruber vol.50, pp.8, 2015, https://doi.org/10.1111/ijfs.12803
  4. A soil bacterium Rhizobium borbori and its potential for citrinin-degrading application vol.66, pp.2, 2013, https://doi.org/10.1007/s13213-015-1167-1
  5. Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus vol.24, pp.2, 2013, https://doi.org/10.1016/j.jfda.2015.11.008
  6. Application of red pigment producing edible fungi for development of a novel type of functional cheese vol.42, pp.10, 2018, https://doi.org/10.1111/jfpp.13707
  7. Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus vol.103, pp.13, 2013, https://doi.org/10.1007/s00253-019-09752-9
  8. An overview of Monascus fermentation processes for monacolin K production vol.18, pp.1, 2013, https://doi.org/10.1515/chem-2020-0006
  9. An overview of Monascus fermentation processes for monacolin K production vol.18, pp.1, 2013, https://doi.org/10.1515/chem-2020-0006
  10. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin vol.11, pp.7, 2020, https://doi.org/10.1039/d0fo00691b