DOI QR코드

DOI QR Code

Efficient Enantioselective Synthesis of (R)-[3,5-Bis(trifluoromethyl)phenyl] Ethanol by Leifsonia xyli CCTCC M 2010241 Using Isopropanol as Co- Substrate

  • Ouyang, Qi (College of Pharmaceutical Science, Zhejiang University of Technology) ;
  • Wang, Pu (College of Pharmaceutical Science, Zhejiang University of Technology) ;
  • Huang, Jin (College of Pharmaceutical Science, Zhejiang University of Technology) ;
  • Cai, Jinbo (College of Pharmaceutical Science, Zhejiang University of Technology) ;
  • He, Junyao (College of Pharmaceutical Science, Zhejiang University of Technology)
  • Received : 2012.03.19
  • Accepted : 2012.11.02
  • Published : 2013.03.28

Abstract

(R)-[3,5-Bis(trifluoromethyl)phenyl] ethanol is a key chiral intermediate for the synthesis of aprepitant. In this paper, an efficient synthetic process for (R)-[3,5- bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by Leifsonia xyli CCTCC M 2010241 cells using isopropanol as the co-substrate for cofactor recycling. Firstly, the substrate and product solubility and cell membrane permeability of biocatalysts were evaluated with different co-substrate additions into the reaction system, in which isopropanol manifested as the best hydrogen donor of coupled NADH regeneration during the bioreduction of 3,5-bis(trifluoromethyl) acetophenone. Subsequently, the optimization of parameters for the bioreduction were undertaken to improve the effectiveness of the process. The determined efficient reaction system contained 200mM of 3,5-bis(trifluoromethyl) acetophenone, 20% (v/v) of isopropanol, and 300 g/l of wet cells. The bioreduction was executed at $30^{\circ}C$ and 200 rpm for 30 h, and 91.8% of product yield with 99.9% of enantiometric excess (e.e.) was obtained. The established bioreduction reaction system could tolerate higher substrate concentrations of 3,5- bis(trifluoromethyl) acetophenone, and afforded a satisfactory yield and excellent product e.e. for the desired (R)-chiral alcohol, thus providing an alternative to the chemical synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.

Keywords

References

  1. Asako, H., M. Shimizu, Y. Makino, and N. Itoh. 2010. Biocatalytic reduction system for the production of chiral methyl (R)/(S)-4-bromo-3-hydroxybutyrate. Tetrahedron Lett. 51: 2664-2666. https://doi.org/10.1016/j.tetlet.2010.03.045
  2. Barros-Filho, B. A., F. M. Nunes, M. D. C. F. de Oliveira, T. L. G. Lemos, M. C. de Mattos, G. de Gonzalo, et al. 2010. Bioreduction of prochiral ketones by growing cells of Lasiodiplodia theobromae: Discovery of a versatile biocatalyst for asymmetric synthesis. J. Mol. Catal. B Enzym. 65: 37-40. https://doi.org/10.1016/j.molcatb.2010.01.023
  3. Gelo-Pujic, M., F. Le Guyader, and T. Schlama. 2006. Microbial and homogenous asymmetric catalysis in the reduction of 1- [3,5-bis(trifluoromethyl)phenyl]ethanone. Tetrahedron Asymmetry 17: 2000-2005. https://doi.org/10.1016/j.tetasy.2006.06.033
  4. Goldberg, K., K. Schroer, S. Lütz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - part II: Whole-cell reductions. Appl. Microbiol. Biotechnol. 76: 249-255. https://doi.org/10.1007/s00253-007-1005-x
  5. Hansen, K. B., J. R. Chilenski, R. Desmond, P. N. Devine, E. J. J. Grabowski, R. Heid, et al. 2003. Scalable, efficient process for the synthesis of (R)-3,5-bistrifluoromethylphenyl ethanol via catalytic asymmetric transfer hydrogenation and isolation as a DABCO inclusion complex. Tetrahedron Asymmetry 14: 3581-3587. https://doi.org/10.1016/j.tetasy.2003.08.043
  6. Held, M., A. Schmid, J. B. van Beilen, and B. Witholt. 2000. Biocatalysis. Biological systems for the production of chemicals. Pure Appl. Chem. 72: 1337-1343. https://doi.org/10.1351/pac200072071337
  7. Homann, M. J., R. B. Vail, E. Previte, M. Tamarez, B. Morgan, D. R. Dodds, and A. Zaks. 2004. Rapid identification of enantioselective ketone reductions using targeted microbial libraries. Tetrahedron. 60: 789-797. https://doi.org/10.1016/j.tet.2003.10.123
  8. Hussain, W., D. J. Pollard, M. Truppo, and G. J. Lye. 2008. Enzymatic ketone reductions with co-factor recycling: Improved reactions with ionic liquid co-solvents. J. Mol. Catal. B Enzym. 55: 19-29. https://doi.org/10.1016/j.molcatb.2008.01.006
  9. Hyun Joo, P., J. Jung, H. Choi, K. N. Uhm, and H. K. Kim. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306. https://doi.org/10.4014/jmb.1003.03025
  10. Inoue, K., Y. Makino, and N. Itoh. 2005. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: A promising biocatalyst for an asymmetric hydrogen transfer bioreduction. Appl. Environ. Microbiol. 71: 3633-3641. https://doi.org/10.1128/AEM.71.7.3633-3641.2005
  11. Kurbanoglu, E. B., K. Zilbeyaz, M. Taskin, and N. I. Kurbanoglu. 2009. Total production of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis(trifluoromethyl)- acetophenone in the submerged culture of Penicillium expansum isolate. Tetrahedron Asymmetry 20: 2759-2763. https://doi.org/10.1016/j.tetasy.2009.11.006
  12. Lou, W. Y., W. Wang, R. F. Li, and M. H. Zong. 2009. Efficient enantioselective reduction of 4'-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. J. Biotechnol. 143: 190-197. https://doi.org/10.1016/j.jbiotec.2009.07.004
  13. Nakamura, K., R. Yamanaka, T. Matsuda, and T. Harada. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14: 2659-2681. https://doi.org/10.1016/S0957-4166(03)00526-3
  14. Pollard, D. J., K. Telari, J. Lane, G. Humphrey, C. McWilliams, S. Nidositko, et al. 2006. Asymmetric reduction of alpha, betaunsaturated ketone to (R) allylic alcohol by Candida chilensis. Biotechnol. Bioeng. 93: 674-686. https://doi.org/10.1002/bit.20751
  15. Pollard, D. J. and J. M. Woodley. 2007. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 25: 66-73. https://doi.org/10.1016/j.tibtech.2006.12.005
  16. Quezada, M. A., J. D. Carballeira, and J. V. Sinisterra. 2009. Monascus kaoliang CBS 302.78 immobilized in polyurethane foam using iso-propanol as co-substrate: Optimized immobilization conditions of a fungus as biocatalyst for the reduction of ketones. Bioresour. Technol. 100: 2018-2025. https://doi.org/10.1016/j.biortech.2008.07.068
  17. Rasor, J. P. and E. Voss. 2001. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal. A Gen. 221: 145-158. https://doi.org/10.1016/S0926-860X(01)00804-3
  18. Stinson, S. C. 2001. Chiral pharmaceuticals. Chem. Eng. News 79: 79-97.
  19. Vankawala, P. J., N. Kolla, C. R. Elati, M. Sreenivasulu, K. A. Kumar, Y. Anjaneyulu, et al. 2007. Efficient synthesis of (1R)- [3,5-bis(trifluoromethyl)phenyl] ethanol, a key intermediate for aprepitant, an NK-1 receptor antagonist. Synth. Commun. 37: 3439-3446. https://doi.org/10.1080/00397910701487473
  20. Wang, P., J. B. Cai, Q. Ouyang, J. Y. He, and H. Z. Su. 2011. Asymmetric biocatalytic reduction of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904. Appl. Microbiol. Biotechnol. 90: 1897-1904. https://doi.org/10.1007/s00253-011-3233-3
  21. Wichmann, R. and D. Vasic-Racki. 2005. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol. 92: 225-260.
  22. Wu, D. X., Y. X. Guan, H. Q. Wang, and S. J. Yao. 2011. 11$\alpha$- Hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour. Technol. 102: 9368-9373. https://doi.org/10.1016/j.biortech.2011.07.060
  23. Xie, Y., J. H. Xu, W. Y. Lu, and G. Q. Lin. 2009. Adzuki bean: A new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance. Bioresour. Technol. 100: 2463-2468. https://doi.org/10.1016/j.biortech.2008.11.054
  24. Yamamoto, H., K. Mitsuhashi, N. Kimoto, Y. Kobayashi, and N. Esaki. 2005. Robust NADH-regenerator: Improved alphahaloketone- resistant formate dehydrogenase. Appl. Microbiol. Biotechnol. 67: 33-39. https://doi.org/10.1007/s00253-004-1728-x

Cited by

  1. Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency vol.98, pp.20, 2013, https://doi.org/10.1007/s00253-014-5770-z
  2. Efficient Enantioselective Biocatalytic Production of a Chiral Intermediate of Sitagliptin by a Newly Filamentous Fungus Isolate vol.180, pp.4, 2013, https://doi.org/10.1007/s12010-016-2125-5
  3. Toward Designing a Novel Oligopeptide-Based Deep Eutectic Solvent: Applied in Biocatalytic Reduction vol.7, pp.1, 2019, https://doi.org/10.1021/acssuschemeng.8b04989
  4. Efficient Biocatalytic Preparation of Optically Pure (R)-1-[4-(Trifluoromethyl)phenyl]ethanol by Recombinant Whole-Cell-Mediated Reduction vol.9, pp.4, 2013, https://doi.org/10.3390/catal9040391
  5. Development of an Efficient and Cost-Effective Enzymatic Process for Production of (R)-[3,5-bis(trifluoromethyl)phenyl] Ethanol Using Carbonyl Reductase Derived from Leifsonia sp. S749 vol.188, pp.1, 2013, https://doi.org/10.1007/s12010-018-2904-2