DOI QR코드

DOI QR Code

Identification of Novel Irreversible Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae

  • Received : 2012.10.17
  • Accepted : 2012.12.26
  • Published : 2013.03.28

Abstract

Uridinediphospho-N-acetylglucosamine enolpyruvyl transferase (MurA, E.C. 2.5.1.7) is an essential bacterial enzyme that catalyzes the first step of the cell wall biosynthetic pathway, which involves the transfer of an enolpyruvyl group from phosphoenolpyruvate to uridinediphospho-Nacetylglucosamine. In this study, novel inhibitors of Haemophilus influenzae MurA (Hi MurA) were identified using high-throughput screening of a chemical library from the Korea Chemical Bank. The identified compounds contain a quinoline moiety and have much lower effective inhibitory concentrations ($IC_{50}$) than fosfomycin, a wellknown inhibitor of MurA. These inhibitors appear to covalently modify the sulfhydryl group of the active site cysteine (C117), since the C117D mutant Hi MurA was not inhibited by these compounds and excess dithiothreitol abolished their inhibitory activities. The increased mass value of Hi MurA after treatment with the identified inhibitor further confirmed that the active-site cysteine residue of Hi MurA is covalently modified by the inhibitor.

Keywords

References

  1. Arca, P., G. Reguera, and C. Hardisson. 1997. Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicenter survey. J. Antimicrob. Chemother. 40: 393-399. https://doi.org/10.1093/jac/40.3.393
  2. Barbosa, M. D., G. Yang, J. Fang, M. G. Kurilla, and D. L. Pompliano. 2002. Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob. Agents Chemother. 46: 943-946. https://doi.org/10.1128/AAC.46.4.943-946.2002
  3. Baum, E. Z., D. A. Montenegro, L. Licata, I. Turchi, G. C. Webb, B. D. Foleno, and K. Buch. 2001. Identification and characterization of a new inhibitor of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother. 45: 3182-3188. https://doi.org/10.1128/AAC.45.11.3182-3188.2001
  4. Bernat, B. A., L. T. Laughlin, and R. N. Armstrong. 1997. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36: 3050-3055. https://doi.org/10.1021/bi963172a
  5. Brown, E. D., E. I. Vivas, C. T. Walsh, and R. Kolter. 1995. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 177: 4194-4197.
  6. Bugg, T. D. and C. T. Walsh. 1992. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: Enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9: 199-215. https://doi.org/10.1039/np9920900199
  7. De Smet, K. A. L., K. E. Kempsell, A. Gallagher, K. Duncan, and D. B. Young. 1999. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145: 3177- 3184.
  8. Du, W., J. R. Brown, D. R. Sylvester, J. Huang, A. F. Chalker, C. Y. So, et al. 2000. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J. Bacteriol. 182: 4146-4152. https://doi.org/10.1128/JB.182.15.4146-4152.2000
  9. Eschenburg, S., W. Kabsch, M. L. Healy, and E. Schönbrunn. 2003. A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3- phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J. Biol. Chem. 278: 49215-49222. https://doi.org/10.1074/jbc.M309741200
  10. Eschenburg, S., M. Priestman, and E. Schonbrunn. 2005. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J. Biol. Chem. 280: 3757-3763.
  11. Han, S.-G., B.-S. Jin, W.-K. Lee, and Y. G. Yu. 2011. Kinetic properties of wild-type and C117D mutant UDP-Nacetylglucosamine enolpyruvyl transferase (MurA) from Haemophilus influenzae. Bull. Korean Chem. Soc. 32: 2549- 2552. https://doi.org/10.5012/bkcs.2011.32.8.2549
  12. Hendlin, D., E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller, F. J. Wolf, et al. 1969. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166: 122-123. https://doi.org/10.1126/science.166.3901.122
  13. Horii, T., T. Kimura, K. Sato, K. Shibayama, and M. Ohta. 1999. Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob. Agents Chemother. 43: 789-793.
  14. Jin, B.-S., S.-G. Han, W.-K. Lee, S. W. Ryoo, S. J. Lee, S. W. Suh, and Y. G. Yu. 2009. Inhibitory mechanism of novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J. Microbiol. Biotechnol. 19: 1582-1589. https://doi.org/10.4014/jmb.0905.05036
  15. Kahan, F. M., J. S. Kahan, P. J. Cassidy, and H. Kropp. 1974. The mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci. 235: 364-386. https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
  16. Kim, D. H., W. J. Lees, K. E. Kempsell, W. S. Lane, K. Duncan, and C. T. Walsh. 1996. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35: 4923-4928. https://doi.org/10.1021/bi952937w
  17. Li, W.-W., H. Jurgen Heinze, and W. Haehnel. 2005. Sitespecific binding of quinones to proteins through thiol addition and addition-elimination reactions J. Am. Chem. Soc. 127: 6140-6141. https://doi.org/10.1021/ja050974x
  18. McCoy, A. J., R. C. Sandlin, and A. T. Maurelli, 2003. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-Nacetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185: 1218- 1228. https://doi.org/10.1128/JB.185.4.1218-1228.2003
  19. Molina-Lopez, J., F. Sanschagrin, and R. C. Levesque. 2006. A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: The first committed step in peptidoglycan biosynthesis. Peptides 27: 3115-3121. https://doi.org/10.1016/j.peptides.2006.08.023
  20. Nozawa, R., T. Yokoda, and T. Fujimoto. 1989. Susceptibility of methicillin-resistant Staphylococcus aureus to the seleniumcontaining compound 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (PZ51). Antimicrob. Agents Chemother. 33: 1388-1390. https://doi.org/10.1128/AAC.33.8.1388
  21. Schonbrunn, E., S. Sack, S. Eschenburg, A. Perrakis, F. Krekel, N. Amrhein, and E. Mandelkow. 1996. Crystal structure of UDP-N-acetylglucosamine enolpyruvyltransferase, the target of the antibiotic fosfomycin. Structure 4: 1065-1075. https://doi.org/10.1016/S0969-2126(96)00113-X
  22. Skarzynski, T., D. H. Kim, W. J. Lees, C. T. Walsh, and K. Duncan. 1998. Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediate bound to the active site of the C115A mutant of MurA. Biochemistry 37: 2572-2577. https://doi.org/10.1021/bi9722608
  23. Skarzynski, T., A. Mistry, A. Wonacott, S. E Hutchinson, V. A Kelly, and K. Duncan. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-Nacetylglucosamine and the drug fosfomycin. Structure 4: 1465- 1474. https://doi.org/10.1016/S0969-2126(96)00153-0
  24. Vadnere, M. K., L. Maggiora, and M. P. Mertes. 1986. Thiol addition to quinones: Model reactions for the inactivation of thymidylate synthase by 5-p-benzoquinonyl-2'-deoxyuridine 5'- phosphate J. Med. Chem. 29: 1714-1720. https://doi.org/10.1021/jm00159a025
  25. Yoon, H. J., S. J. Lee, B. Mikami, H. J. Park, J. Yoo, and S. W. Suh. 2008. Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDPN- acetylglucosamine and fosfomycin. Proteins 71: 1032-1037. https://doi.org/10.1002/prot.21959