References
- Arca, P., G. Reguera, and C. Hardisson. 1997. Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicenter survey. J. Antimicrob. Chemother. 40: 393-399. https://doi.org/10.1093/jac/40.3.393
- Barbosa, M. D., G. Yang, J. Fang, M. G. Kurilla, and D. L. Pompliano. 2002. Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob. Agents Chemother. 46: 943-946. https://doi.org/10.1128/AAC.46.4.943-946.2002
- Baum, E. Z., D. A. Montenegro, L. Licata, I. Turchi, G. C. Webb, B. D. Foleno, and K. Buch. 2001. Identification and characterization of a new inhibitor of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother. 45: 3182-3188. https://doi.org/10.1128/AAC.45.11.3182-3188.2001
- Bernat, B. A., L. T. Laughlin, and R. N. Armstrong. 1997. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36: 3050-3055. https://doi.org/10.1021/bi963172a
- Brown, E. D., E. I. Vivas, C. T. Walsh, and R. Kolter. 1995. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 177: 4194-4197.
- Bugg, T. D. and C. T. Walsh. 1992. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: Enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9: 199-215. https://doi.org/10.1039/np9920900199
- De Smet, K. A. L., K. E. Kempsell, A. Gallagher, K. Duncan, and D. B. Young. 1999. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145: 3177- 3184.
- Du, W., J. R. Brown, D. R. Sylvester, J. Huang, A. F. Chalker, C. Y. So, et al. 2000. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J. Bacteriol. 182: 4146-4152. https://doi.org/10.1128/JB.182.15.4146-4152.2000
- Eschenburg, S., W. Kabsch, M. L. Healy, and E. Schönbrunn. 2003. A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3- phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J. Biol. Chem. 278: 49215-49222. https://doi.org/10.1074/jbc.M309741200
- Eschenburg, S., M. Priestman, and E. Schonbrunn. 2005. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J. Biol. Chem. 280: 3757-3763.
- Han, S.-G., B.-S. Jin, W.-K. Lee, and Y. G. Yu. 2011. Kinetic properties of wild-type and C117D mutant UDP-Nacetylglucosamine enolpyruvyl transferase (MurA) from Haemophilus influenzae. Bull. Korean Chem. Soc. 32: 2549- 2552. https://doi.org/10.5012/bkcs.2011.32.8.2549
- Hendlin, D., E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller, F. J. Wolf, et al. 1969. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166: 122-123. https://doi.org/10.1126/science.166.3901.122
- Horii, T., T. Kimura, K. Sato, K. Shibayama, and M. Ohta. 1999. Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob. Agents Chemother. 43: 789-793.
- Jin, B.-S., S.-G. Han, W.-K. Lee, S. W. Ryoo, S. J. Lee, S. W. Suh, and Y. G. Yu. 2009. Inhibitory mechanism of novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J. Microbiol. Biotechnol. 19: 1582-1589. https://doi.org/10.4014/jmb.0905.05036
- Kahan, F. M., J. S. Kahan, P. J. Cassidy, and H. Kropp. 1974. The mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci. 235: 364-386. https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
- Kim, D. H., W. J. Lees, K. E. Kempsell, W. S. Lane, K. Duncan, and C. T. Walsh. 1996. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35: 4923-4928. https://doi.org/10.1021/bi952937w
- Li, W.-W., H. Jurgen Heinze, and W. Haehnel. 2005. Sitespecific binding of quinones to proteins through thiol addition and addition-elimination reactions J. Am. Chem. Soc. 127: 6140-6141. https://doi.org/10.1021/ja050974x
- McCoy, A. J., R. C. Sandlin, and A. T. Maurelli, 2003. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-Nacetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185: 1218- 1228. https://doi.org/10.1128/JB.185.4.1218-1228.2003
- Molina-Lopez, J., F. Sanschagrin, and R. C. Levesque. 2006. A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: The first committed step in peptidoglycan biosynthesis. Peptides 27: 3115-3121. https://doi.org/10.1016/j.peptides.2006.08.023
- Nozawa, R., T. Yokoda, and T. Fujimoto. 1989. Susceptibility of methicillin-resistant Staphylococcus aureus to the seleniumcontaining compound 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (PZ51). Antimicrob. Agents Chemother. 33: 1388-1390. https://doi.org/10.1128/AAC.33.8.1388
- Schonbrunn, E., S. Sack, S. Eschenburg, A. Perrakis, F. Krekel, N. Amrhein, and E. Mandelkow. 1996. Crystal structure of UDP-N-acetylglucosamine enolpyruvyltransferase, the target of the antibiotic fosfomycin. Structure 4: 1065-1075. https://doi.org/10.1016/S0969-2126(96)00113-X
- Skarzynski, T., D. H. Kim, W. J. Lees, C. T. Walsh, and K. Duncan. 1998. Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediate bound to the active site of the C115A mutant of MurA. Biochemistry 37: 2572-2577. https://doi.org/10.1021/bi9722608
- Skarzynski, T., A. Mistry, A. Wonacott, S. E Hutchinson, V. A Kelly, and K. Duncan. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-Nacetylglucosamine and the drug fosfomycin. Structure 4: 1465- 1474. https://doi.org/10.1016/S0969-2126(96)00153-0
- Vadnere, M. K., L. Maggiora, and M. P. Mertes. 1986. Thiol addition to quinones: Model reactions for the inactivation of thymidylate synthase by 5-p-benzoquinonyl-2'-deoxyuridine 5'- phosphate J. Med. Chem. 29: 1714-1720. https://doi.org/10.1021/jm00159a025
- Yoon, H. J., S. J. Lee, B. Mikami, H. J. Park, J. Yoo, and S. W. Suh. 2008. Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDPN- acetylglucosamine and fosfomycin. Proteins 71: 1032-1037. https://doi.org/10.1002/prot.21959