DOI QR코드

DOI QR Code

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sang-Yoon (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hwang, Dong Hyeon (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Doo-Byoung (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Hyun Ah (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Kwon, Ohsuk (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2012.11.20
  • Accepted : 2012.12.24
  • Published : 2013.03.28

Abstract

The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.

Keywords

References

  1. Abe, H., Y. Fujita, Y. Chiba, Y. Jigami, and K. Nakayama. 2009. Upregulation of genes involved in gluconeogenesis and the glyoxylate cycle suppressed the drug sensitivity of an Nglycan- deficient Saccharomyces cerevisiae mutant. Biosci. Biotechnol. Biochem. 73: 1398-1403. https://doi.org/10.1271/bbb.90069
  2. Abe, H., Y. Fujita, Y. Takaoka, E. Kurita, S. Yano, N. Tanaka, and K. Nakayama. 2009. Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase delta. J. Biosci. Bioeng. 108: 199-204.
  3. Abe, H., Y. Takaoka, Y. Chiba, N. Sato, S. Ohgiya, A. Itadani, et al. 2009. Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19: 428-436.
  4. Blazhenko, O. V., M. Zimmermann, H. A. Kang, G. Bartosz, M. J. Penninckx, V. M. Ubiyvovk, and A. A. Sibirny. 2006. Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. Biometals 19: 593-599. https://doi.org/10.1007/s10534-006-0005-0
  5. Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-Fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345-346. https://doi.org/10.1007/BF00330984
  6. Cheon, S. A., J. Choo, V. M. Ubiyvovk, J. N. Park, M. W. Kim, D. B. Oh, et al. 2009. New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha. Yeast 26: 507-521. https://doi.org/10.1002/yea.1701
  7. de Bruin, E. C., E. H. Duitman, A. L. de Boer, M. Veenhuis, I. G. Bos, and C. E. Hack. 2005. Pharmaceutical proteins from methylotrophic yeasts. Methods Mol. Biol. 308: 65-76.
  8. Eldarov, M. A., A. V. Mardanov, A. V. Beletsky, N. V. Ravin, and K. G. Skryabin. 2011. Complete sequence and analysis of the mitochondrial genome of the methylotrophic yeast Hansenula polymorpha DL-1. FEMS Yeast Res. 11: 464-472. https://doi.org/10.1111/j.1567-1364.2011.00736.x
  9. Gellissen, G. (ed.). 2002. Hansenula polymorpha: Biology and Applications. Wiley-VCH, Weinheim.
  10. Gellissen, G., G. Kunze, C. Gaillardin, J. M. Cregg, E. Berardi, M. Veenhuis, and I. van der Klei. 2005. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res. 5: 1079- 1096. https://doi.org/10.1016/j.femsyr.2005.06.004
  11. Grabek-Lejko, D., O. B. Ryabova, B. Oklejewicz, A. Y. Voronovsky, and A. A. Sibirny. 2006. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. J. Ind. Microbiol. Biotechnol. 33: 934-940. https://doi.org/10.1007/s10295-006-0147-7
  12. Hill, J., K. A. Donald, and D. E. Griffiths. 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19: 5791. https://doi.org/10.1093/nar/19.20.5791
  13. Hodgkins, M., D. Mead, D. J. Ballance, A. Goodey, and P. Sudbery. 1993. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations. Yeast 9: 625-635. https://doi.org/10.1002/yea.320090609
  14. Itakura, M., K. Tabata, S. Eda, H. Mitsui, K. Murakami, J. Yasuda, and K. Minamisawa. 2008. Generation of Bradyrhizobium japonicum mutants with increased $N_2O$ reductase activity by selection after introduction of a mutated dnaQ gene. Appl. Environ. Microbiol. 74: 7258-7264. https://doi.org/10.1128/AEM.01850-08
  15. Kang, H. A. and G. Gellissen. 2005. Hansenula polymorpha, pp. 111-142. In G. Gellissen (ed.). Production of Recombinant Proteins. Wiley-VCH.
  16. Kang, H. A., W. Kang, W. K. Hong, M. W. Kim, J. Y. Kim, J. H. Sohn, et al. 2001. Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol. Bioeng. 76: 175-185. https://doi.org/10.1002/bit.1157
  17. Kang, H. A., J. H. Sohn, E. S. Choi, B. H. Chung, M. H. Yu, and S. K. Rhee. 1998. Glycosylation of human alpha 1-antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14: 371-381. https://doi.org/10.1002/(SICI)1097-0061(19980315)14:4<371::AID-YEA231>3.0.CO;2-1
  18. Kawasaki, Y. and A. Sugino. 2001. Yeast replicative DNA polymerases and their role at the replication fork. Mol. Cells 12: 277-285.
  19. Kim, M. W., E. J. Kim, J. Y. Kim, J. S. Park, D. B. Oh, Y. Shimma, et al. 2006. Functional characterization of the Hansenula polymorpha HOC1, OCH1, and OCR1 genes as members of the yeast OCH1 mannosyltransferase family involved in protein glycosylation. J. Biol. Chem. 281: 6261-6272. https://doi.org/10.1074/jbc.M508507200
  20. Lai, Y. P., J. Huang, L. F. Wang, J. Li, and Z. R. Wu. 2004. A new approach to random mutagenesis in vitro. Biotechnol. Bioeng. 86: 622-627. https://doi.org/10.1002/bit.20066
  21. Manivasakam, P. and R. H. Schiestl. 1998. Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol. Cell Biol. 18: 1736-1745.
  22. Martin, Y., F. J. Navarro, and J. M. Siverio. 2008. Functional characterization of the Arabidopsis thaliana nitrate transporter CHL1 in the yeast Hansenula polymorpha. Plant Mol. Biol. 68: 215-224. https://doi.org/10.1007/s11103-008-9363-z
  23. Morrison, A., A. L. Johnson, L. H. Johnston, and A. Sugino. 1993. Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J. 12: 1467-1473.
  24. Morrison, A. and A. Sugino. 1992. Nucleotide sequence of the POL3 gene encoding DNA polymerase III (delta) of Saccharomyces cerevisiae. Nucleic Acids Res. 20: 375. https://doi.org/10.1093/nar/20.2.375
  25. Morrison, A. and A. Sugino. 1994. The 3' $\rightarrow$ 5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242: 289-296. https://doi.org/10.1007/BF00280418
  26. Oh, K. S., O. S. Kwon, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, et al. 2004. Fabrication of partial genome microarray of the methyltrophic yeast Hansunula polymorpha: Optimization and evaluation of transcript profiling. J. Mol. Biol. 14: 1239- 1248.
  27. Park, E. Y., Y. Ito, M. Nariyama, T. Sugimoto, D. Lies, and T. Kato. 2011. The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis. Appl. Microbiol. Biotechnol. 91: 1315-1326. https://doi.org/10.1007/s00253-011-3325-0
  28. Park, J. N., M. J. Sohn, D. B. Oh, O. Kwon, S. K. Rhee, C. G. Hur, et al. 2007. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl. Environ. Microbiol. 73: 5990-6000. https://doi.org/10.1128/AEM.00863-07
  29. Pignede, G., D. Bouvier, A. M. de Recondo, and G. Baldacci. 1991. Characterization of the POL3 gene product from Schizosaccharomyces pombe indicates inter-species conservation of the catalytic subunit of DNA polymerase delta. J. Mol. Biol. 222: 209-218. https://doi.org/10.1016/0022-2836(91)90207-M
  30. Qian, W., H. Song, Y. Liu, C. Zhang, Z. Niu, H. Wang, and B. Qiu. 2009. Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J. Microbiol. Methods 79: 253-259. https://doi.org/10.1016/j.mimet.2009.09.004
  31. Ramezani-Rad, M., C. P. Hollenberg, J. Lauber, H. Wedler, E. Griess, C. Wagner, et al. 2003. The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res. 4: 207-215. https://doi.org/10.1016/S1567-1356(03)00125-9
  32. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  33. Sanchez Garcia, J., L. F. Ciufo, X. Yang, S. E. Kearsey, and S. A. MacNeill. 2004. The C-terminal zinc finger of the catalytic subunit of DNA polymerase delta is responsible for direct interaction with the B-subunit. Nucleic Acids Res. 32: 3005- 3016. https://doi.org/10.1093/nar/gkh623
  34. Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single-stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346. https://doi.org/10.1007/BF00340712
  35. Shimoda, C., A. Itadani, A. Sugino, and M. Furusawa. 2006. Isolation of thermotolerant mutants by using proofreadingdeficient DNA polymerase delta as an effective mutator in Saccharomyces cerevisiae. Genes Genet. Syst. 81: 391-397. https://doi.org/10.1266/ggs.81.391
  36. Shiwa, Y., S. Fukushima-Tanaka, K. Kasahara, T. Horiuchi, and H. Yoshikawa. 2012. Whole-genome profiling of a novel mutagenesis technique using proofreading-deficient DNA polymerase delta. Int. J. Evol. Biol. 2012: 860-797.
  37. Simon, M., L. Giot, and G. Faye. 1991. The 3' to 5' exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 10: 2165-2170.
  38. Snoek, I. S., Z. A. van der Krogt, H. Touw, R. Kerkman, J. T. Pronk, R. A. Bovenberg, et al. 2009. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet. Biol. 46: 418-426. https://doi.org/10.1016/j.fgb.2009.02.008
  39. Suwannarangsee, S., S. Kim, O. C. Kim, D. B. Oh, J. W. Seo, C. H. Kim, et al. 2012. Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol. 96: 697-709. https://doi.org/10.1007/s00253-011-3866-2
  40. Tait, E., M. C. Simon, S. King, A. J. Brown, N. A. Gow, and D. J. Shaw. 1997. A Candida albicans genome project: Cosmid contigs, physical mapping, and gene isolation. Fungal Genet. Biol. 21: 308-314. https://doi.org/10.1006/fgbi.1997.0983
  41. Tanabe, K., T. Kondo, Y. Onodera, and M. Furusawa. 1999. A conspicuous adaptability to antibiotics in the Escherichia coli mutator strain, dnaQ49. FEMS Microbiol. Lett. 176: 191-196. https://doi.org/10.1111/j.1574-6968.1999.tb13661.x
  42. van der Klei, I. J., H. Yurimoto, Y. Sakai, and M. Veenhuis. 2006. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta 1763: 1453- 1462. https://doi.org/10.1016/j.bbamcr.2006.07.016
  43. van Zutphen, T., R. J. Baerends, K. A. Susanna, A. de Jong, O. P. Kuipers, M. Veenhuis, and I. J. van der Klei. 2010. Adaptation of Hansenula polymorpha to methanol: A transcriptome analysis. BMC Genomics 11: 1. https://doi.org/10.1186/1471-2164-11-1
  44. Wong, S. W., A. F. Wahl, P. M. Yuan, N. Arai, B. E. Pearson, K. Arai, et al. 1988. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 7: 37-47.
  45. Zaccolo, M. and E. Gherardi. 1999. The effect of highfrequency random mutagenesis on in vitro protein evolution: A study on TEM-1 beta-lactamase. J. Mol. Biol. 285: 775-783. https://doi.org/10.1006/jmbi.1998.2262

Cited by

  1. Combinatorial and high-throughput screening approaches for strain engineering vol.99, pp.5, 2015, https://doi.org/10.1007/s00253-015-6400-0
  2. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development vol.5, pp.None, 2013, https://doi.org/10.1186/s40643-018-0200-1