DOI QR코드

DOI QR Code

Biomedical Application of Phosphoproteomics in Neurodegenerative Diseases

  • Bahk, Young Yil (Department of Biotechnology, Konkuk University) ;
  • Mohamed, Bari (Department of Applied Biochemistry, Konkuk University) ;
  • Kim, Young Jun (Department of Applied Biochemistry, Konkuk University)
  • Received : 2013.01.11
  • Accepted : 2013.01.15
  • Published : 2013.03.28

Abstract

Phosphorylation and dephosphorylation of proteins trigger many critical events involved in cellular response, such as regulation of enzymatic activity, protein conformational change, protein-protein interaction, and cellular localization. Any malfunction of protein phosphorylation leads to a diseased state such as diabetes, cancer, and even neurodegenerative diseases. In order to comprehend the molecular view of the complex biological processes of these diseases in depth, very sensitive and detailed analytical methods are necessary for identification of the phosphorylated residues in a protein. As part of these efforts, phosphoproteomics has been developed and applied for the elucidation of neurodegenerative diseases. In this review, we present a brief summary of phosphoproteomics approaches that are now routinely used in biomedical research, and describe the biomedical application of phosphoproteomics especially in Alzheimer's and other neurodegenerative diseases.

Keywords

References

  1. Alpert, A. J. 1990. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. 499: 177-196. https://doi.org/10.1016/S0021-9673(00)96972-3
  2. Alpert, A. J. and P. C. Andrews. 1988. Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)- silica. J. Chromatogr. 443: 85-96. https://doi.org/10.1016/S0021-9673(00)94785-X
  3. Andersson, L. and J. Porath. 1986. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154: 250-254. https://doi.org/10.1016/0003-2697(86)90523-3
  4. Ashman, K. and E. L. Villar. 2009. Phosphoproteomics and cancer research. Clin. Transl. Oncol. 11: 356-362. https://doi.org/10.1007/s12094-009-0369-z
  5. Barr, J. R., V. L. Maggio, D. G. Patterson Jr., G. R. Cooper, L. O. Henderson, W. E. Turner, et al. 1996. Isotope dilution-mass spectrometric quantification of specific proteins: Model application with apolipoprotein A-I. Clin. Chem. 42: 1676-1682.
  6. Bates, G. 2003. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361: 1642-1644. https://doi.org/10.1016/S0140-6736(03)13304-1
  7. Beausoleil, S. A., J. Villen, S. A. Gerber, J. Rush, and S. P. Gygi. 2006. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24: 1285-1292. https://doi.org/10.1038/nbt1240
  8. Blume-Jensen, P. and T. Hunter. 2001. Oncogenic kinase signalling. Nature 411: 355-365. https://doi.org/10.1038/35077225
  9. Boersema, P. J., S. Mohammed, and A. J. Heck. 2008. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal. Bioanal. Chem. 391: 151-159. https://doi.org/10.1007/s00216-008-1865-7
  10. Bossy-Wetzel, E., R. Schwarzenbacher, and S. A. Lipton. 2004. Molecular pathways to neurodegeneration. Nat. Med. 10 (Suppl): S2-S9. https://doi.org/10.1038/nm1067
  11. Bucciantini, M., G. Calloni, F. Chiti, L. Formigli, D. Nosi, C. M. Dobson, and M. Stefani. 2004. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem. 279: 31374-31382. https://doi.org/10.1074/jbc.M400348200
  12. Buxbaum, J. N. 2003. Diseases of protein conformation: What do in vitro experiments tell us about in vivo diseases? Trends Biochem. Sci. 28: 585-592. https://doi.org/10.1016/j.tibs.2003.09.009
  13. Cantin, G. T., T. R. Shock, S. K. Park, H. D. Madhani, and J. R. Yates 3rd. 2007. Optimizing$TiO_2$-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal. Chem. 79: 4666- 4673. https://doi.org/10.1021/ac0618730
  14. Choe, L., M. D'Ascenzo, N. R. Relkin, D. Pappin, P. Ross, B. Williamson, et al. 2007. 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics 7: 3651-3660. https://doi.org/10.1002/pmic.200700316
  15. Chong, P. K., C. S. Gan, T. K. Pham, and P. C. Wright. 2006. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J. Proteome Res. 5: 1232-1240. https://doi.org/10.1021/pr060018u
  16. Chong, P. K., H. Lee, J. W. Kong, M. C. Loh, C. H. Wong, and Y. P. Lim. 2008. Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 8: 4370-4382. https://doi.org/10.1002/pmic.200800051
  17. Choudhary, C. and M. Mann. 2010. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11: 427-439. https://doi.org/10.1038/nrm2900
  18. Cohen, F. E. and J. W. Kelly. 2003. Therapeutic approaches to protein-misfolding diseases. Nature 426: 905-909. https://doi.org/10.1038/nature02265
  19. Cohen, P. 2000. The regulation of protein function by multisite phosphorylation - a 25 year update. Trends Biochem. Sci. 25: 596-601. https://doi.org/10.1016/S0968-0004(00)01712-6
  20. Cohen, P. 2002. The origins of protein phosphorylation. Nat. Cell Biol. 4: E127-E130. https://doi.org/10.1038/ncb0502-e127
  21. Dawson, T. M. and V. L. Dawson. 2003. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302: 819-822. https://doi.org/10.1126/science.1087753
  22. De Meyts, P. and J. Whittaker. 2002. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat. Rev. Drug Discov. 1: 769-783. https://doi.org/10.1038/nrd917
  23. Di Domenico, F., R. Sultana, E. Barone, M. Perluigi, C. Cini, C. Mancuso, et al. 2011. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J. Proteomics 74: 1091-1103. https://doi.org/10.1016/j.jprot.2011.03.033
  24. DiFiglia, M., E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates, J. P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990-1993. https://doi.org/10.1126/science.277.5334.1990
  25. Dobson, C. M. 2003. Protein folding and misfolding. Nature 426: 884-890. https://doi.org/10.1038/nature02261
  26. Figeys, D., S. P. Gygi, G. McKinnon, and R. Aebersold. 1998. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal. Chem. 70: 3728-3734. https://doi.org/10.1021/ac980320p
  27. Gannon, J., L. Staunton, K. O'Connell, P. Doran, and K. Ohlendieck. 2008. Phosphoproteomic analysis of aged skeletal muscle. Int. J. Mol. Med. 22: 33-42.
  28. Gerber, S. A., J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi. 2003. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100: 6940-6945. https://doi.org/10.1073/pnas.0832254100
  29. Goedert, M. 1993. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16: 460-465. https://doi.org/10.1016/0166-2236(93)90078-Z
  30. Goedert, M. 2004. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 15: 45-49. https://doi.org/10.1016/j.semcdb.2003.12.015
  31. Gruhler, A., J. V. Olsen, S. Mohammed, P. Mortensen, N. J. Faergeman, M. Mann, and O. N. Jensen. 2005. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteomics 4: 310-327. https://doi.org/10.1074/mcp.M400219-MCP200
  32. Guo, A., J. Villen, J. Kornhauser, K. A. Lee, M. P. Stokes, K. Rikova, et al. 2008. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl. Acad. Sci. USA 105: 692-697. https://doi.org/10.1073/pnas.0707270105
  33. Gygi, S. P., B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17: 994-999. https://doi.org/10.1038/13690
  34. Hunter, T. 2000. Signaling - 2000 and beyond. Cell 100: 113-127. https://doi.org/10.1016/S0092-8674(00)81688-8
  35. Ingram, E. M. and M. G. Spillantini. 2002. Tau gene mutations: Dissecting the pathogenesis of FTDP-17. Trends Mol. Med. 8: 555-562. https://doi.org/10.1016/S1471-4914(02)02440-1
  36. Jensen, O. N. 2004. Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8: 33-41. https://doi.org/10.1016/j.cbpa.2003.12.009
  37. Jensen, O. N. 2006. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7: 391-403. https://doi.org/10.1038/nrm1939
  38. Jensen, S. S. and M. R. Larsen. 2007. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom. 21: 3635-3645. https://doi.org/10.1002/rcm.3254
  39. Kirkpatrick, D. S., S. A. Gerber, and S. P. Gygi. 2005. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods 35: 265-273. https://doi.org/10.1016/j.ymeth.2004.08.018
  40. Kosako, H. and K. Nagano. 2011. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev. Proteomics 8: 81-94. https://doi.org/10.1586/epr.10.104
  41. Kweon, H. K. and K. Hakansson. 2006. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 78: 1743-1749. https://doi.org/10.1021/ac0522355
  42. Lam, M. P., S. O. Siu, E. Lau, X. Mao, H. Z. Sun, P. C. Chiu, et al. 2010. Online coupling of reverse-phase and hydrophilic interaction liquid chromatography for protein and glycoprotein characterization. Anal. Bioanal. Chem. 398: 791-804. https://doi.org/10.1007/s00216-010-3991-2
  43. Larsen, M. R., T. E. Thingholm, O. N. Jensen, P. Roepstorff, and T. J. Jorgensen. 2005. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics 4: 873-886. https://doi.org/10.1074/mcp.T500007-MCP200
  44. Lopez, E., I. Lopez, A. Ferreira, and J. Sequi. 2011. Clinical and technical phosphoproteomic research. Proteome Sci. 9: 27. https://doi.org/10.1186/1477-5956-9-27
  45. Mann, M. and O. N. Jensen. 2003. Proteomic analysis of posttranslational modifications. Nat. Biotechnol. 21: 255-261. https://doi.org/10.1038/nbt0303-255
  46. Mann, M., S. E. Ong, M. Gronborg, H. Steen, O. N. Jensen, and A. Pandey. 2002. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 20: 261-268. https://doi.org/10.1016/S0167-7799(02)01944-3
  47. Manning, G., D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. 2002. The protein kinase complement of the human genome. Science 298: 1912-1934. https://doi.org/10.1126/science.1075762
  48. Mattson, M. P. 2004. Pathways towards and away from Alzheimer's disease. Nature 430: 631-639. https://doi.org/10.1038/nature02621
  49. Mazanek, M., G. Mituloviae, F. Herzog, C. Stingl, J. R. Hutchins, J. M. Peters, and K. Mechtler. 2007. Titanium dioxide as a chemoaffinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat. Protoc. 2: 1059-1069. https://doi.org/10.1038/nprot.2006.280
  50. McNulty, D. E. and R. S. Annan. 2008. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell Proteomics 7: 971-980. https://doi.org/10.1074/mcp.M700543-MCP200
  51. Moorhead, G. B., L. Trinkle-Mulcahy, and A. Ulke-Lemee. 2007. Emerging roles of nuclear protein phosphatases. Nat. Rev. Mol. Cell Biol. 8: 234-244. https://doi.org/10.1038/nrm2126
  52. Morales, M. A., R. Watanabe, C. Laurent, P. Lenormand, J. C. Rousselle, A. Namane, and G. F. Spath. 2008. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8: 350-363. https://doi.org/10.1002/pmic.200700697
  53. Moser, K. and F. M. White. 2006. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res. 5: 98-104. https://doi.org/10.1021/pr0503073
  54. Motoyama, A., T. Xu, C. I. Ruse, J. A. Wohlschlegel, and J. R. Yates 3rd. 2007. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal. Chem. 79: 3623-3634. https://doi.org/10.1021/ac062292d
  55. Mumby, M. and D. Brekken. 2005. Phosphoproteomics: New insights into cellular signaling. Genome Biol. 6: 230. https://doi.org/10.1186/gb-2005-6-9-230
  56. Neville, D. C., C. R. Rozanas, E. M. Price, D. B. Gruis, A. S. Verkman, and R. R. Townsend. 1997. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 6: 2436-2445.
  57. Oka, T., K. Tagawa, H. Ito, and H. Okazawa. 2011. Dynamic changes of the phosphoproteome in postmortem mouse brains. PLoS One 6: e21405. https://doi.org/10.1371/journal.pone.0021405
  58. Olsen, J. V. and M. Mann. 2004. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl. Acad. Sci. USA 101: 13417-13422. https://doi.org/10.1073/pnas.0405549101
  59. Ong, S. E., B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey, and M. Mann. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1: 376-386. https://doi.org/10.1074/mcp.M200025-MCP200
  60. Ong, S. E. and M. Mann. 2006. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1: 2650-2660.
  61. Ozlu, N., B. Akten, W. Timm, N. Haseley, H. Steen, and J. A. Steen. 2010. Phosphoproteomics. Wiley Interdiscip Rev. Syst. Biol. Med. 2: 255-276. https://doi.org/10.1002/wsbm.41
  62. Peng, J., J. E. Elias, C. C. Thoreen, L. J. Licklider, and S. P. Gygi. 2003. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. J. Proteome Res. 2: 43-50. https://doi.org/10.1021/pr025556v
  63. Piggee, C. 2009. Phosphoproteomics: Miles to go before it's routine. Anal. Chem. 81: 2418-2420. https://doi.org/10.1021/ac802740t
  64. Pinkse, M. W., P. M. Uitto, M. J. Hilhorst, B. Ooms, and A. J. Heck. 2004. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLCESI- MS/MS and titanium oxide precolumns. Anal. Chem. 76: 3935-3943. https://doi.org/10.1021/ac0498617
  65. Posewitz, M. C. and P. Tempst. 1999. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71: 2883-2892. https://doi.org/10.1021/ac981409y
  66. Ross, C. A. and M. A. Poirier. 2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10 (Suppl): S10-S17. https://doi.org/10.1038/nm1066
  67. Ross, C. A. and M. A. Poirier. 2005. Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6: 891-898. https://doi.org/10.1038/nrm1742
  68. Ross, P. L., Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan, et al. 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3: 1154-1169. https://doi.org/10.1074/mcp.M400129-MCP200
  69. Rudrabhatla, P., P. Grant, H. Jaffe, M. J. Strong, and H. C. Pant. 2010. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. FASEB J. 24: 4396-4407. https://doi.org/10.1096/fj.10-157859
  70. Rush, J., A. Moritz, K. A. Lee, A. Guo, V. L. Goss, E. J. Spek, et al. 2005. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23: 94-101. https://doi.org/10.1038/nbt1046
  71. Salih, E. 2005. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom. Rev. 24: 828-846. https://doi.org/10.1002/mas.20042
  72. Schmelzle, K. and F. M. White. 2006. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol. 17: 406-414. https://doi.org/10.1016/j.copbio.2006.06.004
  73. Schreiber, T. B., N. Mausbacher, S. B. Breitkopf, K. Grundner- Culemann, and H. Daub. 2008. Quantitative phosphoproteomics - an emerging key technology in signal-transduction research. Proteomics 8: 4416-4432. https://doi.org/10.1002/pmic.200800132
  74. Schulze, W. X. and M. Mann. 2004. A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 279: 10756-10764.
  75. Selkoe, D. J. 2004. Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nat. Cell Biol. 6: 1054-1061. https://doi.org/10.1038/ncb1104-1054
  76. Shastry, B. S. 2003. Neurodegenerative disorders of protein aggregation. Neurochem. Int. 43: 1-7. https://doi.org/10.1016/S0197-0186(02)00196-1
  77. Smith, J. C. and D. Figeys. 2008. Recent developments in mass spectrometry-based quantitative phosphoproteomics. Biochem. Cell Biol. 86: 137-148. https://doi.org/10.1139/O08-007
  78. Spillantini, M. G. and M. Goedert. 1998. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21: 428-433. https://doi.org/10.1016/S0166-2236(98)01337-X
  79. Steen, H., B. Kuster, M. Fernandez, A. Pandey, and M. Mann. 2002. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277: 1031-1039. https://doi.org/10.1074/jbc.M109992200
  80. Stefani, M. and C. M. Dobson. 2003. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. (Berl.) 81: 678-699. https://doi.org/10.1007/s00109-003-0464-5
  81. Thingholm, T. E., O. N. Jensen, and M. R. Larsen. 2009. Analytical strategies for phosphoproteomics. Proteomics 9: 1451- 1468. https://doi.org/10.1002/pmic.200800454
  82. Thingholm, T. E., O. N. Jensen, P. J. Robinson, and M. R. Larsen. 2008. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell Proteomics 7: 661-671.
  83. Thingholm, T. E., T. J. Jorgensen, O. N. Jensen, and M. R. Larsen. 2006. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1: 1929-1935. https://doi.org/10.1038/nprot.2006.185
  84. Tolnay, M. and A. Probst. 1999. Tau protein pathology in Alzheimer's disease and related disorders [Review]. Neuropathol. Appl. Neurobiol. 25: 171-187. https://doi.org/10.1046/j.1365-2990.1999.00182.x
  85. Villen, J. and S. P. Gygi. 2008. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3: 1630-1638. https://doi.org/10.1038/nprot.2008.150
  86. Yang, X. J. 2005. Multisite protein modification and intramolecular signaling. Oncogene 24: 1653-1662. https://doi.org/10.1038/sj.onc.1208173
  87. Zhou, H., R. Tian, M. Ye, S. Xu, S. Feng, C. Pan, et al. 2007. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 28: 2201-2215. https://doi.org/10.1002/elps.200600718

Cited by

  1. Enrichment specificity of micro and nano‐sized titanium and zirconium dioxides particles in phosphopeptide mapping vol.48, pp.11, 2013, https://doi.org/10.1002/jms.3254
  2. Environmental Stress Affects the Activity of Metabolic and Growth Factor Signaling Networks and Induces Autophagy Markers in MCF7 Breast Cancer Cells vol.13, pp.3, 2013, https://doi.org/10.1074/mcp.m113.034751