DOI QR코드

DOI QR Code

Algicidal Activity of a Dibenzofuran-Degrader Rhodococcus sp.

  • Wang, Meng-Hui (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University) ;
  • Peng, Peng (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University) ;
  • Liu, Yu-Mei (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University) ;
  • Jia, Rui-Bao (Jinan Water and Waste Water Monitoring Center) ;
  • Li, Li (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University)
  • Received : 2012.08.13
  • Accepted : 2012.10.15
  • Published : 2013.02.28

Abstract

Rhodococcus sp. strain p52, a previously isolated dibenzofuran degrader, could effectively inhibit the growth of cyanobacteria, including species of Microcystis, Anabaena, and Nodularia. When strain p52 was inoculated at the concentration of $7.7{\times}10^7$ CFU/ml, 93.5% of exponentially growing Microcystis aeruginosa ($7.3{\times}10^6$ cells/ml initially) was inhibited after 4 day. The threshold concentration for its algicidal activity against M. aeruginosa was $7.7{\times}10^6$ CFU/ml. Strain p52 exerted algicidal effect by synthesizing extracellular substances, which were identified as trans-3-indoleacrylic acid, DL-pipecolic acid, and L-pyroglutamic acid. The effective concentrations of trans-3-indoleacrylic acid and DL-pipecolic acid against M. aeruginosa were tested to be 0.5 mg/l and 5 mg/l, respectively.

Keywords

References

  1. Banin, E., S. K. Khare, F. Naider, and E. Rosenberg. 2001. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of Zooxanthellae. Appl. Environ. Microbiol. 67: 1536-1541. https://doi.org/10.1128/AEM.67.4.1536-1541.2001
  2. Carmichael, W. 1992. Cyanobacteria secondary metabolites - the cyanotoxins. J. Appl. Microbiol. 72: 445-459.
  3. Chen, W. M., F. S. Sheu, and S. Y. Sheu. 2011. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme Microb. Technol. 49: 372-379. https://doi.org/10.1016/j.enzmictec.2011.06.016
  4. Chen, W. M., F. S. Sheu, and S. Y. Sheu. 2012. Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch. Microbiol. 194: 103-112. https://doi.org/10.1007/s00203-011-0730-9
  5. Choi, H., B. Kim, J. Kim, and M. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (cyanobacteria) in eutrophic freshwaters. Biol. Control 33: 335-343. https://doi.org/10.1016/j.biocontrol.2005.03.007
  6. Cho, J. Y. 2012. Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci. Biotechnol. Biochem. 76: 1452-1458. https://doi.org/10.1271/bbb.120102
  7. Garry, R. T., P. Hearing, and E. M. Cosper. 1998. Characterization of a lytic virus infectious to the bloom-forming microalga Aureococcus anophagefferens (Pelagophyceae). J. Phycol. 34: 616-621. https://doi.org/10.1046/j.1529-8817.1998.340616.x
  8. Han, G., X. Feng, Y. Jia, C. Wang, X. He, Q. Zhou, and X. Tian. 2011. Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China. J. Microbiol. 49: 562-527. https://doi.org/10.1007/s12275-011-0496-4
  9. Hirao, S., K. Tara, K. Kuwano, J. Tanaka, and F. Ishibashi. 2012. Algicidal activity of glycerolipids from brown alga Ishige sinicola toward red tide microalgae. Biosci. Biotechnol. Biochem. 76: 372-374. https://doi.org/10.1271/bbb.110645
  10. Hussain, H., M. K. Tchimene, I. Ahmed, K. Meier, M. Steinert, S. Draeger, et al. 2011. Antimicrobial chemical constituents from the endophytic fungus Phomopsis sp. from Notobasis syriaca. Nat. Prod. Commun. 6: 1905-1906.
  11. Jeong, S. Y., K. Ishida, Y. Ito, S. Okada, and M. Murakami. 2003. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 44: 8005-8007. https://doi.org/10.1016/j.tetlet.2003.08.115
  12. Jin, K. S., H. K. Lee, and J. H. Yim. 2008. Statistical optimization of medium components for the production of prodigiosin by Hahella chejuensis KCTC 2396. J. Microbiol. Biotechnol. 18: 1903-1907.
  13. Kang, Y. K., S. Y. Cho, Y. H. Kang, T. Katano, E. S. Jin, D. S. Kong, and M. S. Han. 2008. Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. J. Appl. Phycol. 20: 375-386. https://doi.org/10.1007/s10811-007-9267-3
  14. Kim, B. H., M. Sang, S. J. Hwang, and M. S. Han. 2008. In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: Implications for biological bloom control. Limnol. Oceanogr. Methods 6: 513-522. https://doi.org/10.4319/lom.2008.6.513
  15. Kim, D., J. F. Kim, J. H. Yim, S. K. Kwon, C. H. Lee, and H. K. Lee. 2008. Red to red - the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J. Microbiol. Biotechnol. 18: 1621-1629.
  16. Kim, J. D. and C. G. Lee. 2006. Antialgal effect of a novel polysaccharolytic Sinorhizobium kostiense AFK-13 on Anabaena flos-aquae causing water bloom. J. Microbiol. Biotechnol. 16: 1613-1621.
  17. Kim, J. D. and C. G. Lee. 2007. Purification and characterization of extracellular β-glucosidase from Sinorhizobium kostiense AFK-13 and its algal lytic effect on Anabaena flos-aquae. J. Microbiol. Biotechnol. 17: 745-752.
  18. Kim, M. J., S. Y. Jeong, and S. J. Lee. 2008. Isolation, identification and algicidal activity of Marine bacteria against Cochlodinium polykrikoides. J. Appl. Microbiol. 20: 1069-1078.
  19. Kim, Y. M., Y. Wu, T. U. Duong, G. S. Ghodake, S. W. Kim, E. Jin, and H. Cho. 2010. Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl. Biochem. Biotechnol. 162: 2273-2283. https://doi.org/10.1007/s12010-010-9001-5
  20. Kim, Y. M., Y. Wu, T. U. Duong, S. G. Jung, S. W. Kim, H. Cho, and E. Jin. 2012. Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14: 312-322. https://doi.org/10.1007/s10126-011-9412-5
  21. Kim, Y. S., D. S. Lee, S. Y. Jeong, W. J. Lee, and M. S. Lee. 2009. Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae Chattonella marina. J. Microbiol. 47: 9-18. https://doi.org/10.1007/s12275-008-0141-z
  22. Kodani, S., A. Imoto, A. Mitsutani, and M. Murakami. 2002. Isolation and identification of the antialgal compound, harmane (1-methyl-$\beta$-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14: 109-114. https://doi.org/10.1023/A:1019533414018
  23. Lee, S., J. Kato, N. Takiguchi, A. Kuroda, T. Ikeda, A. Mitsutani, and H. Ohtake. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66: 4334-4339. https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  24. Lee, Y. K., C. Y. Ahn, H. S. Kim, and H. M. Oh. 2010. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnol. Lett. 32: 1673- 1678. https://doi.org/10.1007/s10529-010-0350-5
  25. Li, Y., W. Hongyi, M. Komatsu, K. Ishibashi, L. Jinsan, T. Ito, et al. 2012. Isolation and characterization of bacterial isolates algicidal against a harmful bloom-forming cyanobacterium Microcystis aeruginosa. Biocontrol Sci. 17: 107-114. https://doi.org/10.4265/bio.17.107
  26. Park, S. C., J. K. Lee, S. W. Kim, and Y. Park. 2011. Selective algicidal action of peptides against harmful algal bloom species. PLoS One 6: e26733. https://doi.org/10.1371/journal.pone.0026733
  27. Sigee, D., R. Glenn, M. Andrews, E. Bellinger, R. Butler, H. Epton, and R. Hendry. 1999. Biological control of cyanobacteria: Principles and possibilities. Hydrobiologia 395: 161-172.
  28. Yoshikawa, K., K. Adachi, M. Nishijima, T. Takadera, S. Tamaki, K. Harada, et al. 2000. $\beta$-Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Appl. Environ. Microbiol. 66: 718-722. https://doi.org/10.1128/AEM.66.2.718-722.2000
  29. Wang, X., L. Gong, S. Liang, X. Han, C. Zhu, and Y. Li. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4: 433-443 https://doi.org/10.1016/j.hal.2004.06.001
  30. Wu, Y., J. Liu, L. Yang, H. Chen, S. Zhang, H. Zhao, and N. Zhang. 2011. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ. Microbiol. 13: 604-615. https://doi.org/10.1111/j.1462-2920.2010.02363.x

Cited by

  1. Inhibition of Microcystis aeruginosa by the Extracellular Substances from an Aeromonas sp. vol.23, pp.9, 2013, https://doi.org/10.4014/jmb.1304.04025
  2. Algicidal metabolites produced by Bacillus sp. strain B1 against Phaeocystis globosa vol.41, pp.3, 2013, https://doi.org/10.1007/s10295-013-1393-0
  3. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus vol.9, pp.2, 2013, https://doi.org/10.14202/vetworld.2016.142-146
  4. NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01968