DOI QR코드

DOI QR Code

Molecular Cloning and Heterologous Expression of an Acid-Stable Endoxylanase Gene from Penicillium oxalicum in Trichoderma reesei

  • Wang, Juan (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Mai, Guoqin (College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology) ;
  • Liu, Gang (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Yu, Shaowen (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University)
  • Received : 2012.08.14
  • Accepted : 2012.09.14
  • Published : 2013.02.28

Abstract

An endoxylanase gene (PoxynA) that belongs to the glycoside hydrolase (GH) family 11 was cloned from a xylanolytic strain, Penicillium oxalicum B3-11(2). PoxynA was overexpressed in Trichoderma reesei QM9414 by using a constitutive strong promoter of the encoding pyruvate decarboxylase (pdc). The high extracellular xylanase activities in the fermentation liquid of the transformants were maintained 29~35-fold higher compared with the wild strain. The recombinant POXYNA was purified to homogeneity, and its characters were analyzed. Its optimal temperature and pH value were $50^{\circ}C$ and 5.0, respectively. The enzyme was stable at a pH range of 2.0 to 7.0. Using beechwood as the substrate, POXYNA had a high specific activity of $1,856{\pm}53.5$ IU/mg. In the presence of metal ions, such as $Cu^{2+}$, and $Mg^{2+}$, the activity of the enzyme increased. However, strong inhibition of the enzyme activity was observed in the presence of $Mn^{2+}$ and $Fe^{2+}$. The recombinant POXYNA hydrolyzed birchwood xylan, beechwood xylan, and oat spelt xylan to produce short-chain xylooligosaccharides, xylopentaose, xylotriose, and xylobiose as the main products. This is the first report on the expression properties of a recombinant endoxylanase gene from Penicillium oxalicum. The properties of this endoxylanase make it promising for applications in the food and feed industries.

Keywords

References

  1. Bailey, M. J., P. Biely, and K. J. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cheng, K.-J., L. B. Selinger, J.-H. Liu, Y. Hu, C. W. Forsberg, and M. M. Moloney. 2000. Xylanase obtained from an anaerobic fungus. US Patent 6137032.
  5. Chivero, E. T., A. N. Mutukumira, and R. Zvauya. 2001. Partial purification and characterization of a xylanase enzyme produced by a microorganism isolated from selected indigenous fruits of Zimbabwe. Food Chem. 72: 179-185. https://doi.org/10.1016/S0308-8146(00)00216-8
  6. Driss, D., F. Bhiri, R. Ghorbel, and S. E. Chaabouni. 2012. Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: Purification and characterization. Protein Expr. Purif. 83: 8-14. https://doi.org/10.1016/j.pep.2012.02.012
  7. Fu, X. Y., W. Zhao, A. S. Xiong, Y. S. Tian, and R. H. Peng. 2011. High expression of recombinant Streptomyces sp. S38 xylanase in Pichia pastoris by codon optimization and analysis of its biochemical properties. Mol. Biol. Rep. 38: 4991-4997. https://doi.org/10.1007/s11033-010-0644-7
  8. Fushinobu, S., K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa. 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: Biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11: 1121-1128. https://doi.org/10.1093/protein/11.12.1121
  9. Heck, J. X., L. H. B. Soares, P. F. Hertz, and M. A. Z. Ayub. 2006. Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochem. Eng. 32: 179-184. https://doi.org/10.1016/j.bej.2006.09.020
  10. Henrissat, B. and A. Bairoch. 1996. Updating the sequencebased classification of glycosyl hydrolases. Biochem. J. 316: 695-696. https://doi.org/10.1042/bj3160695
  11. Henissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases on amino acid sequence similarities. Biochem. J. 293: 781-788. https://doi.org/10.1042/bj2930781
  12. Irena, R., P. Jacek, and B. Stanislaw. 2006. Isolation and properties of Aspergillus niger IBT 90 xylanase for bakery. Appl. Microbiol. Biotechnol. 69: 665-671. https://doi.org/10.1007/s00253-005-0011-0
  13. Jiang, Z. Q., W. Deng, Y. P. Zhu, L. T. Li, Y. J. Sheng, and K. Hayashi. 2004. The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications. J. Mol. Catal. B Enzym. 27: 207-213. https://doi.org/10.1016/j.molcatb.2003.11.012
  14. Juturu, V. and J. C. Wu. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 30: 1219-1227. https://doi.org/10.1016/j.biotechadv.2011.11.006
  15. Khandeparker, R., P. Verma, and D. Deobagkar. 2011. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: Gene cloning and sequencing. New Biotechnol. 28: 814-821. https://doi.org/10.1016/j.nbt.2011.08.001
  16. Kimura, T., J. Ito, A. Kawano, T. Makino, H. Kondo, S. Karita, et al. 2000. Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci. Biotechnol. Biochem. 64: 1230-1237. https://doi.org/10.1271/bbb.64.1230
  17. Krengel, U. and B. W. Dijkstra. 1996. Three-dimensional structure of endo-1,4-beta-xylanase I from Aspergillus niger: Molecular basis for its low pH optimum. J. Mol. Biol. 263: 70-78 https://doi.org/10.1006/jmbi.1996.0556
  18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  19. Li, J., J. Wang, S. Wang, M. Xing, S. Yu, and G. Liu. 2012. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microb. Cell Fact. 11: 84-93 https://doi.org/10.1186/1475-2859-11-84
  20. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation contants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  21. Liu, W., P. Shi, Q. Chen, P. Yang, G. Wang, Y. Wang, et al. 2010. Gene cloning, overexpression, and characterization of a xylanase from Penicillium sp. CGMCC 1669. Appl. Biochem. Biotechnol. 162: 1-12. https://doi.org/10.1007/s12010-009-8719-4
  22. Liu, Y. and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking. Genomics 25: 674-681. https://doi.org/10.1016/0888-7543(95)80010-J
  23. Lv, D., W. Wang, and D. Wei. 2012. Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67: 67-71. https://doi.org/10.1016/j.plasmid.2011.10.002
  24. Mandels, M. and R. E. Andreotti. 1978. Problems and changes in the cellulose to cellulase fermentation. Process Biochem. 13: 6-13.
  25. Mao, L. W., P. Meng, C. Zhou, L. X. Ma, G. M. Zhang, and Y. H. Ma. 2012. Molecular cloning and heterologous expression of an acid stable xylanase gene from Alternaria sp. HB186. World J. Microbiol. Biotechnol. 28: 777-784. https://doi.org/10.1007/s11274-011-0924-y
  26. Maat, J., M. Roza, J. Verbakel, H. Stam, M. J. Santos Da Silva, M. Bosse, et al. 1992. Xylanases and their application in bakery, pp. 349-360. In J. Visser, M. A. Kusters van Someren, G. Beldman, and A. G. J. Voragen (eds.). Xylans and Xylanases. Progress in Biotechnology, No. 7. Elsevier Science Publishers, Amsterdam, The Netherlands.
  27. Miller, L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  28. Penttila, M., H. Nevalainen, M. Ratto, E. Salminen, and J. Knowles. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155-164. https://doi.org/10.1016/0378-1119(87)90110-7
  29. Pointing, S. B., L. L. P. Vrijmoed, and E. B. G. Jones. 1998. A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot. Mar. 41: 293-298. https://doi.org/10.1515/botm.1998.41.1-6.293
  30. Polizeli, M. L. T. M., A. C. S. Rizzatti, and R. Monti. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
  31. Punt, P. J., R. P. Oliver, M. A. Dingemanse, P. H. Pouwels, and H. C. A. van den. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117-124. https://doi.org/10.1016/0378-1119(87)90164-8
  32. Qin, L. N., F. R. Cai, X. R. Dong, Z. B. Huang, Y. Tao, J. Z. Huang, and Z. Y. Dong. 2012. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. Bioresour. Technol. 109: 116-122. https://doi.org/10.1016/j.biortech.2012.01.013
  33. Salles, B. C., V. S. Te'o, M. D. Gibbs, P. L. Bergquist, E. X. Filho, E. A. Ximenes, and K. M. Nevalainen. 2007. Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei. Biotechnol. Lett. 29: 1195-1201. https://doi.org/10.1007/s10529-007-9380-z
  34. Sedmak, J. J. and S. E. Grossberg. 1977. A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 79: 544-552. https://doi.org/10.1016/0003-2697(77)90428-6
  35. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
  36. Torronen, A. and J. Rouvinen. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34: 847-856. https://doi.org/10.1021/bi00003a019
  37. Vieille, C. and G. J. Ziekus. 2001. Hyperthermophilic enzymes: Sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
  38. White, T. J., T. Bruns, and S. Lee. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In: PCR Protocols: A Guide to Methods and Applications.
  39. Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74. https://doi.org/10.1016/0076-6879(88)60107-8
  40. Yang, Y. N., K. X. Shan, L. F. Ping, and J. M. Lu. 2008. Cloning, sequencing and expression of a novel xylanase cDNA from a newly isolated Aspergillus awamori in Pichia pastoris. Afr. J. Biotechnol. 7: 4251-4259.
  41. Yuan, K. P., L. L. Vrijmoed, and M. G. Feng. 2005. Survey of coastal mangrove fungi for xylanase production and optimized culture and assay conditions. Acta Microbiologica Sinica 45: 91-96.
  42. Zhao, Y. Y., K. Meng, H. Y. Luo, P. L. Yang, P. J. Shi, H. Q. Huang, et al. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868. https://doi.org/10.4014/jmb.1102.02024
  43. Zhou, C. Y., Y. T. Wang, M. C. Wu, W. Wang, and D. F. Li. 2009. Heterologous expression of xylanase II from Aspergillus usamii in Pichia pastoris. Food Technol. Biotechnol. 47: 90-95.
  44. Zou, G., S. H. Shi, Y. P. Jiang, J. V. D. Brink, R. P. D. Vries, L. Chen, et al. 2012. Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb. Cell Fact. 11: 21-32. https://doi.org/10.1186/1475-2859-11-21

Cited by

  1. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose vol.13, pp.None, 2013, https://doi.org/10.1186/1472-6750-13-42
  2. Homologous constitutive expression of Xyn III in Trichoderma reesei QM9414 and its characterization vol.59, pp.3, 2013, https://doi.org/10.1007/s12223-013-0288-9
  3. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei vol.41, pp.1, 2013, https://doi.org/10.1007/s10295-013-1359-2
  4. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1 vol.42, pp.9, 2013, https://doi.org/10.1007/s10295-015-1628-3
  5. Characterization of Two Endo-β-1, 4-Xylanases from Myceliophthora thermophila and Their Saccharification Efficiencies, Synergistic with Commercial Cellulase vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.00233
  6. Thermophilic xylanases: from bench to bottle vol.38, pp.7, 2013, https://doi.org/10.1080/07388551.2018.1425662
  7. Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications vol.1868, pp.2, 2013, https://doi.org/10.1016/j.bbapap.2019.140312