References
- Bailey, M. J., P. Biely, and K. J. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
- Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Cheng, K.-J., L. B. Selinger, J.-H. Liu, Y. Hu, C. W. Forsberg, and M. M. Moloney. 2000. Xylanase obtained from an anaerobic fungus. US Patent 6137032.
- Chivero, E. T., A. N. Mutukumira, and R. Zvauya. 2001. Partial purification and characterization of a xylanase enzyme produced by a microorganism isolated from selected indigenous fruits of Zimbabwe. Food Chem. 72: 179-185. https://doi.org/10.1016/S0308-8146(00)00216-8
- Driss, D., F. Bhiri, R. Ghorbel, and S. E. Chaabouni. 2012. Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: Purification and characterization. Protein Expr. Purif. 83: 8-14. https://doi.org/10.1016/j.pep.2012.02.012
- Fu, X. Y., W. Zhao, A. S. Xiong, Y. S. Tian, and R. H. Peng. 2011. High expression of recombinant Streptomyces sp. S38 xylanase in Pichia pastoris by codon optimization and analysis of its biochemical properties. Mol. Biol. Rep. 38: 4991-4997. https://doi.org/10.1007/s11033-010-0644-7
- Fushinobu, S., K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa. 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: Biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11: 1121-1128. https://doi.org/10.1093/protein/11.12.1121
- Heck, J. X., L. H. B. Soares, P. F. Hertz, and M. A. Z. Ayub. 2006. Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochem. Eng. 32: 179-184. https://doi.org/10.1016/j.bej.2006.09.020
- Henrissat, B. and A. Bairoch. 1996. Updating the sequencebased classification of glycosyl hydrolases. Biochem. J. 316: 695-696. https://doi.org/10.1042/bj3160695
- Henissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases on amino acid sequence similarities. Biochem. J. 293: 781-788. https://doi.org/10.1042/bj2930781
- Irena, R., P. Jacek, and B. Stanislaw. 2006. Isolation and properties of Aspergillus niger IBT 90 xylanase for bakery. Appl. Microbiol. Biotechnol. 69: 665-671. https://doi.org/10.1007/s00253-005-0011-0
- Jiang, Z. Q., W. Deng, Y. P. Zhu, L. T. Li, Y. J. Sheng, and K. Hayashi. 2004. The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications. J. Mol. Catal. B Enzym. 27: 207-213. https://doi.org/10.1016/j.molcatb.2003.11.012
- Juturu, V. and J. C. Wu. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 30: 1219-1227. https://doi.org/10.1016/j.biotechadv.2011.11.006
- Khandeparker, R., P. Verma, and D. Deobagkar. 2011. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: Gene cloning and sequencing. New Biotechnol. 28: 814-821. https://doi.org/10.1016/j.nbt.2011.08.001
- Kimura, T., J. Ito, A. Kawano, T. Makino, H. Kondo, S. Karita, et al. 2000. Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci. Biotechnol. Biochem. 64: 1230-1237. https://doi.org/10.1271/bbb.64.1230
- Krengel, U. and B. W. Dijkstra. 1996. Three-dimensional structure of endo-1,4-beta-xylanase I from Aspergillus niger: Molecular basis for its low pH optimum. J. Mol. Biol. 263: 70-78 https://doi.org/10.1006/jmbi.1996.0556
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Li, J., J. Wang, S. Wang, M. Xing, S. Yu, and G. Liu. 2012. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microb. Cell Fact. 11: 84-93 https://doi.org/10.1186/1475-2859-11-84
- Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation contants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
- Liu, W., P. Shi, Q. Chen, P. Yang, G. Wang, Y. Wang, et al. 2010. Gene cloning, overexpression, and characterization of a xylanase from Penicillium sp. CGMCC 1669. Appl. Biochem. Biotechnol. 162: 1-12. https://doi.org/10.1007/s12010-009-8719-4
- Liu, Y. and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking. Genomics 25: 674-681. https://doi.org/10.1016/0888-7543(95)80010-J
- Lv, D., W. Wang, and D. Wei. 2012. Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67: 67-71. https://doi.org/10.1016/j.plasmid.2011.10.002
- Mandels, M. and R. E. Andreotti. 1978. Problems and changes in the cellulose to cellulase fermentation. Process Biochem. 13: 6-13.
- Mao, L. W., P. Meng, C. Zhou, L. X. Ma, G. M. Zhang, and Y. H. Ma. 2012. Molecular cloning and heterologous expression of an acid stable xylanase gene from Alternaria sp. HB186. World J. Microbiol. Biotechnol. 28: 777-784. https://doi.org/10.1007/s11274-011-0924-y
- Maat, J., M. Roza, J. Verbakel, H. Stam, M. J. Santos Da Silva, M. Bosse, et al. 1992. Xylanases and their application in bakery, pp. 349-360. In J. Visser, M. A. Kusters van Someren, G. Beldman, and A. G. J. Voragen (eds.). Xylans and Xylanases. Progress in Biotechnology, No. 7. Elsevier Science Publishers, Amsterdam, The Netherlands.
- Miller, L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Penttila, M., H. Nevalainen, M. Ratto, E. Salminen, and J. Knowles. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155-164. https://doi.org/10.1016/0378-1119(87)90110-7
- Pointing, S. B., L. L. P. Vrijmoed, and E. B. G. Jones. 1998. A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot. Mar. 41: 293-298. https://doi.org/10.1515/botm.1998.41.1-6.293
- Polizeli, M. L. T. M., A. C. S. Rizzatti, and R. Monti. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
- Punt, P. J., R. P. Oliver, M. A. Dingemanse, P. H. Pouwels, and H. C. A. van den. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117-124. https://doi.org/10.1016/0378-1119(87)90164-8
- Qin, L. N., F. R. Cai, X. R. Dong, Z. B. Huang, Y. Tao, J. Z. Huang, and Z. Y. Dong. 2012. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. Bioresour. Technol. 109: 116-122. https://doi.org/10.1016/j.biortech.2012.01.013
- Salles, B. C., V. S. Te'o, M. D. Gibbs, P. L. Bergquist, E. X. Filho, E. A. Ximenes, and K. M. Nevalainen. 2007. Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei. Biotechnol. Lett. 29: 1195-1201. https://doi.org/10.1007/s10529-007-9380-z
- Sedmak, J. J. and S. E. Grossberg. 1977. A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 79: 544-552. https://doi.org/10.1016/0003-2697(77)90428-6
- Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
- Torronen, A. and J. Rouvinen. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34: 847-856. https://doi.org/10.1021/bi00003a019
- Vieille, C. and G. J. Ziekus. 2001. Hyperthermophilic enzymes: Sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
- White, T. J., T. Bruns, and S. Lee. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In: PCR Protocols: A Guide to Methods and Applications.
- Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74. https://doi.org/10.1016/0076-6879(88)60107-8
- Yang, Y. N., K. X. Shan, L. F. Ping, and J. M. Lu. 2008. Cloning, sequencing and expression of a novel xylanase cDNA from a newly isolated Aspergillus awamori in Pichia pastoris. Afr. J. Biotechnol. 7: 4251-4259.
- Yuan, K. P., L. L. Vrijmoed, and M. G. Feng. 2005. Survey of coastal mangrove fungi for xylanase production and optimized culture and assay conditions. Acta Microbiologica Sinica 45: 91-96.
- Zhao, Y. Y., K. Meng, H. Y. Luo, P. L. Yang, P. J. Shi, H. Q. Huang, et al. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868. https://doi.org/10.4014/jmb.1102.02024
- Zhou, C. Y., Y. T. Wang, M. C. Wu, W. Wang, and D. F. Li. 2009. Heterologous expression of xylanase II from Aspergillus usamii in Pichia pastoris. Food Technol. Biotechnol. 47: 90-95.
- Zou, G., S. H. Shi, Y. P. Jiang, J. V. D. Brink, R. P. D. Vries, L. Chen, et al. 2012. Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb. Cell Fact. 11: 21-32. https://doi.org/10.1186/1475-2859-11-21
Cited by
- Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose vol.13, pp.None, 2013, https://doi.org/10.1186/1472-6750-13-42
- Homologous constitutive expression of Xyn III in Trichoderma reesei QM9414 and its characterization vol.59, pp.3, 2013, https://doi.org/10.1007/s12223-013-0288-9
- Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei vol.41, pp.1, 2013, https://doi.org/10.1007/s10295-013-1359-2
- Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1 vol.42, pp.9, 2013, https://doi.org/10.1007/s10295-015-1628-3
- Characterization of Two Endo-β-1, 4-Xylanases from Myceliophthora thermophila and Their Saccharification Efficiencies, Synergistic with Commercial Cellulase vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.00233
- Thermophilic xylanases: from bench to bottle vol.38, pp.7, 2013, https://doi.org/10.1080/07388551.2018.1425662
- Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications vol.1868, pp.2, 2013, https://doi.org/10.1016/j.bbapap.2019.140312