References
- Banta, B., B. A. Swanson, S. Wu, A. Jarnagin, and S. Anderson. 2002. Alteration of the specificity of the cofactorbinding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng. 15: 131-140. https://doi.org/10.1093/protein/15.2.131
- Benvenga, S., A. Amato, M. Calvani, and F. Trimarchi. 2004. Effects of carnitine on thyroid hormone action. Ann. NY Acad. Sci. 1033: 158-167. https://doi.org/10.1196/annals.1320.015
- Bubner, P., M. Klimacek, and B. Nidetzky. 2008. Structureguided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). FEBS Lett. 582: 233-237 https://doi.org/10.1016/j.febslet.2007.12.008
- Campbell, E., I. R. Wheeldon, and S. Banta. 2010. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol. Bioeng. 107: 763-774. https://doi.org/10.1002/bit.22869
- Choi, Y. H., H. J. Choi, D. Kim, K. N. Uhm, and H. K. Kim. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1- propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193. https://doi.org/10.1007/s00253-010-2442-5
- Colucci, S., G. Mori, S. Vaira, G. Brunetti, G. Greco, L. Mancini, et al. 2005. L-Carnitine and isovaleryl L-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro. Calcif. Tissue Int. 76: 458-465. https://doi.org/10.1007/s00223-004-0147-4
- Ellis, E. M. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131. https://doi.org/10.1111/j.1574-6968.2002.tb11425.x
- Ferranri, R., E. Merli, G. Cicchitelli, D. Mele, A. Fucili, and C. Ceconi. 2004. Therapeutic effects of L-carnitine and propionyl- L-carnitine on cardiovascular diseases: A review. Ann. NY Acad. Sci. 1033: 79-91. https://doi.org/10.1196/annals.1320.007
- Goldberg, K., K. Schroer, S. Lütz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols-part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-248. https://doi.org/10.1007/s00253-007-1002-0
- Jung, J., H. J. Park, K. N. Uhm, D. Kim, and H. K. Kim. 2010, Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: Enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849. https://doi.org/10.1016/j.bbapap.2010.06.011
- Jung, J., S. Park, and H. K. Kim. 2012. Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. J. Mol. Catal. B Enzym. 84: 15-21. https://doi.org/10.1016/j.molcatb.2012.01.016
- Kamitori, S., A. Iguchi, A. Ohtaki, M. Yamada, and K. Kita. 2005. X-Ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reduction of carbonyl compounds. J. Mol. Biol. 352: 551-558. https://doi.org/10.1016/j.jmb.2005.07.011
- Katzberg, M., N. Skorupa-Parachin, M. F. Gorwa-Grauslund, and M. Beratau. 2010. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ- diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int. J. Mol. Sci. 11: 1735-1758. https://doi.org/10.3390/ijms11041735
- Monti, D., G. Ottolina, G. Carrea, and S. Riva. 2011. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 111: 4111-4140. https://doi.org/10.1021/cr100334x
- Moore, J. C., D. J. Pollard, B. Kosjek, and P. N. Devine. 2007. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 40: 1412-1419. https://doi.org/10.1021/ar700167a
- Ni, Y., C. X. Li, H. M. Ma, J. Zhang, and J. H. Xu. 2011. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity. Appl. Microbiol. Biotechnol. 89: 1111-1118. https://doi.org/10.1007/s00253-010-2941-4
- Park, H. J., J. Jung, H. J. Choi, K. N. Uhm, and H. K. Kim. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306. https://doi.org/10.4014/jmb.1003.03025
- Schroer, K., U. Mackfeld, I. A. W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, et al. 2007. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 132: 438-444. https://doi.org/10.1016/j.jbiotec.2007.08.003
- Wang, J., P. Cieplak, and P. A. Kollman. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21: 1049-1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
- Wang, J., R. M. Wolf, J. W. Caldwell. P. A. Kollman, and D. A. Case. 2004. Development and testing of general amber force field. J. Comput. Chem. 25: 1157-1174. https://doi.org/10.1002/jcc.20035
- Weckbecker, A., H. Gröger, and W. Hummel. 2010. Regeneration of nicotinamide coenzymes: Principles and applications for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 120: 195-242.
- Yamamoto, H., A. Matsuyama, and Y. Kabayashi. 2002. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66: 925-927. https://doi.org/10.1271/bbb.66.925
- Ye, Q., P. Ouyang, and H. Ying. 2011. A review - biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: Recent advances and future perspectives. Appl. Microbiol. Biotechnol. 89: 513-522. https://doi.org/10.1007/s00253-010-2942-3
Cited by
- Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis vol.23, pp.10, 2013, https://doi.org/10.4014/jmb.1305.05030
- Production of (R)-Ethyl-4-Chloro-3-Hydroxybutanoate Using Saccharomyces cerevisiae YOL151W Reductase Immobilized onto Magnetic Microparticles vol.25, pp.11, 2013, https://doi.org/10.4014/jmb.1507.07007