DOI QR코드

DOI QR Code

Cyt1Aa from Bacillus thuringiensis subsp. israelensis Enhances Mosquitocidal Activity of B. thuringiensis subsp. kurstaki HD-1 Against Aedes aegypti but not Culex quinquefasciatus

  • Park, Hyun-Woo (Department of Natural and Mathematical Sciences, California Baptist University) ;
  • Pino, Brent C. (Department of Natural and Mathematical Sciences, California Baptist University) ;
  • Kozervanich-Chong, Switzerlyna (Department of Health Science, California Baptist University) ;
  • Hafkenscheid, Erika A. (School of Nursing, California Baptist University) ;
  • Oliverio, Ryan M. (Department of Natural and Mathematical Sciences, California Baptist University) ;
  • Federici, Brian A. (Department of Entomology, University of California) ;
  • Bideshi, Dennis K. (Department of Natural and Mathematical Sciences, California Baptist University)
  • Received : 2012.07.27
  • Accepted : 2012.09.09
  • Published : 2013.01.28

Abstract

The Cyt1Aa protein of Bacillus thuringiensis subsp. israelensis is known to synergize mosquitocidal proteins of B. thuringiensis and Bacillus sphaericus strains. Cyt1Aa is highly lipophilic, and after binding in vivo to the midgut microvillar membrane serves as a "receptor" for mosquitocidal Cry proteins, which subsequently form cation channels that kill mosquito larvae. Here we report that Cyt1Aa can serve a similar function for lepidopteran-specific Cry proteins of B. thuringiensis in certain mosquito larvae. Engineering Cyt1Aa into the HD-1 isolate of B. thuringiensis subsp. kurstaki enhanced toxicity against $4^{th}$ instars of Aedes aegypti, but not against $4^{th}$ instars of Culex quinquefasciatus.

Keywords

References

  1. Crickmore, N., E. J. Bone, J. A. Williams, and D. J. Ellar. 1995. Contribution of the individual components of the o-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett. 131: 249-254.
  2. Dankocsik, C., W. P. Donovan, and C. S. Jany. 1990. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol. Microbiol. 4: 2087- 2094. https://doi.org/10.1111/j.1365-2958.1990.tb00569.x
  3. Donovan, W. P., C. C. Dankocsik, M. P. Gilbert, M. C. Gawron-Burke, R. G. Groat, and B. C. Carlton. 1988. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J. Biol. Chem. 263: 561-567.
  4. Federici, B. A. and L. S. Bauer. 1998. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl. Environ. Microbiol. 64: 4368-4371.
  5. Federici, B. A., H.-W. Park, and Y. Sakano. 2006. Insecticidal protein crystals of Bacillus thuringiensis, pp. 195-236. In J. M. Shively (ed.). Microbiology Monographs, Vol. 1, Inclusions in Prokaryotes. Springer-Verlag, Heidelberg.
  6. Fernandez, L. E., C. Perez, L. Segovia, M. H. Rodriguez, S. S. Gill, A. Bravo, and M. Soberon. 2005. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop $\alpha$-8 of domain II. FEBS Lett. 579: 3508-3514. https://doi.org/10.1016/j.febslet.2005.05.032
  7. Finney, D. 1971. Probit Analysis. Cambridge University Press, Cambridge, England.
  8. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  9. Liang, Y. and D. H. Dean. 1994. Location of a lepidopteran specificity region in insecticidal crystal protein CryIIA from Bacillus thuringiensis. Mol. Microbiol. 13: 569-575. https://doi.org/10.1111/j.1365-2958.1994.tb00451.x
  10. Park, H.-W., D. K. Bideshi, M. C. Wirth, J. J. Johnson, W. E. Walton, and B. A. Federici. 2005. Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile Virus. Am. J. Trop. Med. Hyg. 72: 732-738.
  11. Park, H.-W., A. Delecluse, and B. A. Federici. 2001. Construction and characterization of a recombinant Bacillus thuringiensis subsp. israelensis strain that produces Cry11B. J. Invertebr. Pathol. 78: 37-44. https://doi.org/10.1006/jipa.2001.5038
  12. Perez, C., L. E. Fernandez, J. Sun, L. J. Folch, S. S. Gill, M. Soberon, and A. Bravo. 2005. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11A toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 102: 18303-18308. https://doi.org/10.1073/pnas.0505494102
  13. Sayyed, A. H., N. Crickmore, and D. J. Wright. 2001. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 67: 5859-5861. https://doi.org/10.1128/AEM.67.12.5859-5861.2001
  14. Wirth, M. C., B. A. Federici, and W. E. Walton. 2000. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Appl. Environ. Microbiol. 66: 1093-1097. https://doi.org/10.1128/AEM.66.3.1093-1097.2000
  15. Wirth, M. C., G. P. Georghiou, and B. A. Federici. 1997. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536-10540. https://doi.org/10.1073/pnas.94.20.10536
  16. Wirth, M. C., H.-W. Park, W. E. Walton, and B. A. Federici. 2005. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl. Environ. Microbiol. 71: 185-189. https://doi.org/10.1128/AEM.71.1.185-189.2005
  17. Wu, D., J. J. Johnson, and B. A. Federici. 1994. Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol. Microbiol. 13: 965-972. https://doi.org/10.1111/j.1365-2958.1994.tb00488.x
  18. Yamamoto, T. and R. E. McLaughlin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103: 414-421. https://doi.org/10.1016/0006-291X(81)90468-X

Cited by

  1. Aeration effects on metabolic events during sporulation of Bacillus thuringiensis vol.52, pp.7, 2013, https://doi.org/10.1007/s12275-014-3547-9
  2. Cry4Ba and Cyt1Aa proteins from Bacillus thuringiensis israelensis: Interactions and toxicity mechanism against Aedes aegypti vol.104, pp.None, 2013, https://doi.org/10.1016/j.toxicon.2015.07.337
  3. Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes vol.147, pp.None, 2020, https://doi.org/10.1016/j.micpath.2020.104391
  4. A Novel Antidipteran Bacillus thuringiensis Strain: Unusual Cry Toxin Genes in a Highly Dynamic Plasmid Environment vol.87, pp.5, 2021, https://doi.org/10.1128/aem.02294-20
  5. Cry toxins of Bacillus thuringiensis: a glimpse into the Pandora’s box for the strategic control of vector borne diseases vol.4, pp.1, 2021, https://doi.org/10.1007/s42398-020-00151-9
  6. Viability and reconstitution of delta-endotoxins from Bacillus thuringiensis var. israelensis extracts after forty years of storage against Aedes aegypti (Diptera: Culicidae) vol.31, pp.1, 2013, https://doi.org/10.1186/s41938-021-00381-x