References
- Crickmore, N., E. J. Bone, J. A. Williams, and D. J. Ellar. 1995. Contribution of the individual components of the o-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett. 131: 249-254.
- Dankocsik, C., W. P. Donovan, and C. S. Jany. 1990. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol. Microbiol. 4: 2087- 2094. https://doi.org/10.1111/j.1365-2958.1990.tb00569.x
- Donovan, W. P., C. C. Dankocsik, M. P. Gilbert, M. C. Gawron-Burke, R. G. Groat, and B. C. Carlton. 1988. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J. Biol. Chem. 263: 561-567.
- Federici, B. A. and L. S. Bauer. 1998. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl. Environ. Microbiol. 64: 4368-4371.
- Federici, B. A., H.-W. Park, and Y. Sakano. 2006. Insecticidal protein crystals of Bacillus thuringiensis, pp. 195-236. In J. M. Shively (ed.). Microbiology Monographs, Vol. 1, Inclusions in Prokaryotes. Springer-Verlag, Heidelberg.
-
Fernandez, L. E., C. Perez, L. Segovia, M. H. Rodriguez, S. S. Gill, A. Bravo, and M. Soberon. 2005. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop
$\alpha$ -8 of domain II. FEBS Lett. 579: 3508-3514. https://doi.org/10.1016/j.febslet.2005.05.032 - Finney, D. 1971. Probit Analysis. Cambridge University Press, Cambridge, England.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Liang, Y. and D. H. Dean. 1994. Location of a lepidopteran specificity region in insecticidal crystal protein CryIIA from Bacillus thuringiensis. Mol. Microbiol. 13: 569-575. https://doi.org/10.1111/j.1365-2958.1994.tb00451.x
- Park, H.-W., D. K. Bideshi, M. C. Wirth, J. J. Johnson, W. E. Walton, and B. A. Federici. 2005. Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile Virus. Am. J. Trop. Med. Hyg. 72: 732-738.
- Park, H.-W., A. Delecluse, and B. A. Federici. 2001. Construction and characterization of a recombinant Bacillus thuringiensis subsp. israelensis strain that produces Cry11B. J. Invertebr. Pathol. 78: 37-44. https://doi.org/10.1006/jipa.2001.5038
- Perez, C., L. E. Fernandez, J. Sun, L. J. Folch, S. S. Gill, M. Soberon, and A. Bravo. 2005. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11A toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 102: 18303-18308. https://doi.org/10.1073/pnas.0505494102
- Sayyed, A. H., N. Crickmore, and D. J. Wright. 2001. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 67: 5859-5861. https://doi.org/10.1128/AEM.67.12.5859-5861.2001
- Wirth, M. C., B. A. Federici, and W. E. Walton. 2000. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Appl. Environ. Microbiol. 66: 1093-1097. https://doi.org/10.1128/AEM.66.3.1093-1097.2000
- Wirth, M. C., G. P. Georghiou, and B. A. Federici. 1997. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536-10540. https://doi.org/10.1073/pnas.94.20.10536
- Wirth, M. C., H.-W. Park, W. E. Walton, and B. A. Federici. 2005. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl. Environ. Microbiol. 71: 185-189. https://doi.org/10.1128/AEM.71.1.185-189.2005
- Wu, D., J. J. Johnson, and B. A. Federici. 1994. Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol. Microbiol. 13: 965-972. https://doi.org/10.1111/j.1365-2958.1994.tb00488.x
- Yamamoto, T. and R. E. McLaughlin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103: 414-421. https://doi.org/10.1016/0006-291X(81)90468-X
Cited by
- Aeration effects on metabolic events during sporulation of Bacillus thuringiensis vol.52, pp.7, 2013, https://doi.org/10.1007/s12275-014-3547-9
- Cry4Ba and Cyt1Aa proteins from Bacillus thuringiensis israelensis: Interactions and toxicity mechanism against Aedes aegypti vol.104, pp.None, 2013, https://doi.org/10.1016/j.toxicon.2015.07.337
- Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes vol.147, pp.None, 2020, https://doi.org/10.1016/j.micpath.2020.104391
- A Novel Antidipteran Bacillus thuringiensis Strain: Unusual Cry Toxin Genes in a Highly Dynamic Plasmid Environment vol.87, pp.5, 2021, https://doi.org/10.1128/aem.02294-20
- Cry toxins of Bacillus thuringiensis: a glimpse into the Pandora’s box for the strategic control of vector borne diseases vol.4, pp.1, 2021, https://doi.org/10.1007/s42398-020-00151-9
- Viability and reconstitution of delta-endotoxins from Bacillus thuringiensis var. israelensis extracts after forty years of storage against Aedes aegypti (Diptera: Culicidae) vol.31, pp.1, 2013, https://doi.org/10.1186/s41938-021-00381-x