References
-
Angelov, A., M. Putyrski, and W. Liebl. 2006. Molecular and biochemical characterization of
$\alpha$ -glucosidase and$\alpha$ -mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 188: 7123-7131. https://doi.org/10.1128/JB.00757-06 - Bill, R. M. and S. L. Flisch. 1996. Chemical and biological approaches to glycoprotein synthesis. Chem. Biol. 3: 145-149. https://doi.org/10.1016/S1074-5521(96)90255-0
- Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Cha, H. J., H. G. Yoon, Y. W. Kim, H. S. Lee, J. W. Kim, K. S. Kweon, et al. 1998. Molecular and enzymatic characterization of novel maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251-262. https://doi.org/10.1046/j.1432-1327.1998.2530251.x
- Costantino, H. R., S. H. Brown, and R. M. Kelly. 1990. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115oC. J. Bacteriol. 172: 3654-3660.
- Crout, D. H. C., P. Critchley, D. Muller, M. Scigelova, S. Singh, and G. Vic. 1999. Application of glycosylases in the synthesis of complex carbohydrates, pp. 15-23. In H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (eds.). Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, UK.
- Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151 https://doi.org/10.1016/S1367-5931(00)00183-6
- Di Lernia, I., A. Morana, A. Ottombrino, S. Fusco, M. Rossi, and M. de Rosa. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409-416. https://doi.org/10.1007/s007920050086
-
Galichet, A. and B. Belarbi. 1999. Cloning of an
$\alpha$ -glucosidase gene from Thermococcus hydrothermalis by functional complementation of a Saccharomyces cerevisiae mal11 mutant strain. FEBS Lett. 458: 188-192. https://doi.org/10.1016/S0014-5793(99)01155-2 -
Giannesi, G. C., M. L. T. M. Polizeli, H. F. Terenzi, and J. A. Jorge. 2006. A novel
$\alpha$ -glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterisation of the enzyme. Proc. Biochem. 41: 1729-1735. https://doi.org/10.1016/j.procbio.2006.03.017 - Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
-
Hostinova, E., A. Solovicova, and J. Gasperik. 2005. Cloning and expression of a gene for an
$\alpha$ -glucosidase from Saccharomycopsis fibuligera homologous to family GH31 of yeast glucoamylases. Appl. Microbiol. Biotechnol. 69: 51-56. https://doi.org/10.1007/s00253-005-1971-9 - Hough, W. D. and M. J. Danson. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39-46. https://doi.org/10.1016/S1367-5931(99)80008-8
-
Hung, V. S., Y. Hatada, S. Goda, J. Lu, Y. Hidaka, Z. Li, et al. 2005.
$\alpha$ -Glucosidase from a strain of deep-sea Geobacillus: A potential enzyme for the biosynthesis of complex carbohydrates. Appl. Microbiol. Biotechnol. 68: 757-765. https://doi.org/10.1007/s00253-005-1977-3 - Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, et al. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 8: 123-140. https://doi.org/10.1093/dnares/8.4.123
-
Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel
$\alpha$ -glucosidase from Asperillus nidurans with strong transglycosylation activity. Appl. Environ. Microbiol. 68: 1250-1256. https://doi.org/10.1128/AEM.68.3.1250-1256.2002 -
Kelly, C. T., M. Giblin, and W. M. Fogarty. 1986. Resolution, purification, and characterization of two extracellular glucohydrolases,
$\alpha$ -glucosidase and maltase of Bacillus licheniformis. Can. J. Microbiol. 32: 342-347. https://doi.org/10.1139/m86-066 - Kim, I. C., J. H. Cha, J. R. Kim, S. Y. Jang, B. C. Seo, T. K. Cheong, et al. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108-22114.
- Kim, Y. W., J. H. Choi, J. W. Kim, C. Park, J. W. Kim, H. Cha, et al. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874. https://doi.org/10.1128/AEM.69.8.4866-4874.2003
-
Kinsella, B. T., A. Larkin, M. Bolton, and B. A. Cantwell. 1991. Molecular cloning and characterization of a Candida tsukubaensis
$\alpha$ -glucosidase gene in the yeast Saccharomyces cerevisiae. Curr. Genet. 20: 45-52. https://doi.org/10.1007/BF00312764 -
Kobayash, I., M. Tokuda, T. Konda, H. Nakano, and S. Kitahata. 2003. Purification and characterization of a new type of
$\alpha$ - glucosidase from Paecilomyces lilacinus that has transglycosylation activity to produce$\alpha$ -1,3 and$\alpha$ -1,2 linked oligosaccharides. Biosci. Biotechnol. Biochem. 67: 29-35. https://doi.org/10.1271/bbb.67.29 - Kuriki, T. and T. Imanaka. 1989. Characterization of thermostable pullulanase from Bacillus stearothermophilus and the nucleotide sequence of the gene. J. Gen. Microbiol. 135: 1521-1528.
-
Kurimoto, M., T. Nishimoto, T. Nakada, H. Chaen, S. Fukuda, and Y. Tsujisaka. 1997. Synthesis by an
$\alpha$ -glucosidase of glycosyltrehaloses with an isomaltosyl residue. Biosci. Biotechnol. Biochem. 61: 699-703. https://doi.org/10.1271/bbb.61.699 -
Lee, S. S., S. He, and S. G. Withers. 2001. Identification of the catalytic nucleophile of the Family 31
$\alpha$ -glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate. Biochem. J. 359: 381-386. -
Linke, B., A. Rüdiger, G. Wittenberg, P. L. Jorgensen, and G. Antranikian. 1992. Production of heat-stable pullulanase and
$\alpha$ - glucosidase from the extremely thermophilic archaeon Pyrococcus woesei. DECHEMA Biotechnol. Conf. 5: 161-163. -
Mala, S., H. Dvorakova, R. Hrabal, and B. Kralova. 1999. Towards regioselective synthesis of oligosaccharides by use of
$\alpha$ -glucosidases with different substrate specificity. Carbohydr. Res. 322: 209-218. https://doi.org/10.1016/S0008-6215(99)00222-0 - Marín, D., D. Linde, and M. F. Lobato. 2006. Purification and biochemical characterization of an α-glucosidase from Xanthophyllomyces dendrorhus. Yeast 23: 117-125. https://doi.org/10.1002/yea.1345
- Nakao, M., T. Nakayama, M. Harada, A. Kakudo, H. Ikemoto, S. Kobayashi, and Y. Shibano. 1994. Purification and characterization of a Bacillus sp. SAM1606 thermostable alpha-glucosidase with transglycosylation activity. Appl. Microbiol. Biotechnol. 41: 337-343. https://doi.org/10.1007/BF00221229
-
Oda, Y., H. Iwamoto, K. Hiromi, and K. Tonomura. 1993. Purification and characterization of
$\alpha$ -glucosidase from Torulaspora pretoriensis YK-1. Biosci. Biotechnol. Biochem. 57: 1902- 1905. -
Okuyama, M., Y. Tanimoto, T. Ito, A. Anzai, H. Mori, A. Kimura, et al. 2005. Purification and characterization of the hyperglycosylated extracellular
$\alpha$ -glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol. 37: 472-480. https://doi.org/10.1016/j.enzmictec.2004.06.018 -
Nashiru, O., S. H. Koh, S. Y. Lee, and D. S. Lee. 2001. Novel
$\alpha$ -glucosidase from extreme thermophile Thermus caldophilus GK24. Biochem. Mol. Biol. 34: 347-354. -
Piller, K., R. M. Daniel, and H. H. Petach. 1996. Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: Enzyme activity at
$130{^{\circ}C}$ . Biochim. Biophys. Acta 1292: 197-205 https://doi.org/10.1016/0167-4838(95)00203-0 - Rolfsmeier, M. and P. Blum. 1995. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J. Bacteriol. 177: 482-485.
- Rolfsmeier, M., C. Haseltine, E. Bini, A. Clark, and P. Blum. 1998. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 180: 1287-1295.
- Suzuki, T., T. Iwasaki, T. Uzawa, K. Hara, N. Nemoto, T. Kon, et al. 2002. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6: 39-44. https://doi.org/10.1007/s007920100221
-
Tanaka, Y., T. Aki, Y. Hidaka, Y. Furuya, S. Kawamoto, S. Shigeta, et al. 2002. Purification and characterization of a novel fungal
$\alpha$ -glucosidase from Mortierella alliacea with high starchhydrolytic activity. Biosci. Biotechnol. Biochem. 66: 2415- 2423. https://doi.org/10.1271/bbb.66.2415 - Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418. https://doi.org/10.3109/10409238909082556
- Watanabe, K., K. Miyake, and Y. Suzuki. 2001. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC 7064 oligo-1,6-glucosidase. Biosci. Biotechnol. Biochem. 65: 2058-2064. https://doi.org/10.1271/bbb.65.2058
-
Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, et al. 2004. Purification and chracterization of Acremonium implicatum
$\alpha$ -glucosidase having regioselectivity for$\alpha$ -1,3-glucosidic linkage. Biochim. Biophys. Acta 1700: 189-198. https://doi.org/10.1016/j.bbapap.2004.05.002
Cited by
- Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential vol.53, pp.7, 2014, https://doi.org/10.1007/s00394-013-0649-9
- Molecular cloning, characterization, and application of a novel thermostable α-glucosidase from the hyperthermophilic archaeon Pyrobaculum aerophilum strain IM2 vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0024-0
- Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11 vol.15, pp.None, 2013, https://doi.org/10.1186/s12896-015-0197-x
- Properties and applications of β‐glycosidase from Bacteroides thetaiotaomicron that specifically hydrolyses isoflavone glycosides vol.50, pp.6, 2013, https://doi.org/10.1111/ijfs.12786
- Broad substrate specificity of a hyperthermophilic α-glucosidase from Pyrobaculum arsenaticum vol.25, pp.6, 2013, https://doi.org/10.1007/s10068-016-0256-7
- Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi vol.7, pp.4, 2013, https://doi.org/10.3390/life7040046
- Starch biotransformation into isomaltooligosaccharides using thermostable alpha-glucosidase from Geobacillus stearothermophilus vol.6, pp.None, 2013, https://doi.org/10.7717/peerj.5086
- Biotechnological applications of archaeal enzymes from extreme environments vol.51, pp.None, 2013, https://doi.org/10.1186/s40659-018-0186-3
- Biocatalytic synthesis of 2‐ O ‐ α ‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α ‐glucosidase from Oryza sativa vol.16, pp.11, 2021, https://doi.org/10.1002/biot.202100199