DOI QR코드

DOI QR Code

Enzymatic Properties of a Thermostable ${\alpha}$-Glucosidase from Acidothermophilic Crenarchaeon Sulfolobus tokodaii Strain 7

  • Park, Jung-Eun (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University) ;
  • Park, So Hae (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University) ;
  • Woo, Jung Yoon (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University) ;
  • Hwang, Hye Sun (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University) ;
  • Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Lee, Heeseob (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University)
  • Received : 2012.10.10
  • Accepted : 2012.10.23
  • Published : 2013.01.28

Abstract

We have characterized the putative ${\alpha}$-glucosidase gene (st2525) selected by total genome analysis from the acidothermophilic crenarchaeon Sulfolobus tokodaii strain 7. The ORF was cloned and expressed as a fusion protein in Escherichia coli, and recombinant ST2525 was purified by Ni-NTA affinity chromatography. Maximum activity was observed at $95^{\circ}C$ and pH 4.0, and the enzyme exhibited stability with half-lives of 40.1 min and 7.75 min at extremely high temperatures of $100^{\circ}C$ and $105^{\circ}C$, respectively. The enzyme retained at least 85% of its maximal activity in the pH range of 4.0-11.0. ST2525 exclusively hydrolyzed ${\alpha}$-1,4-glycosidic linkages of oligosaccharides in an exo-type manner, with highest catalytic efficiency toward maltotriose. The enzyme also displayed transglycosylation activity, converting maltose to isomaltose, panose, maltotriose, isomaltotriose, etc. From these results, ST2525 could be potentially useful for starch hydrolysis as well as novel synthesis of oligosaccharides in industry.

Keywords

References

  1. Angelov, A., M. Putyrski, and W. Liebl. 2006. Molecular and biochemical characterization of $\alpha$-glucosidase and $\alpha$-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 188: 7123-7131. https://doi.org/10.1128/JB.00757-06
  2. Bill, R. M. and S. L. Flisch. 1996. Chemical and biological approaches to glycoprotein synthesis. Chem. Biol. 3: 145-149. https://doi.org/10.1016/S1074-5521(96)90255-0
  3. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cha, H. J., H. G. Yoon, Y. W. Kim, H. S. Lee, J. W. Kim, K. S. Kweon, et al. 1998. Molecular and enzymatic characterization of novel maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251-262. https://doi.org/10.1046/j.1432-1327.1998.2530251.x
  5. Costantino, H. R., S. H. Brown, and R. M. Kelly. 1990. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115oC. J. Bacteriol. 172: 3654-3660.
  6. Crout, D. H. C., P. Critchley, D. Muller, M. Scigelova, S. Singh, and G. Vic. 1999. Application of glycosylases in the synthesis of complex carbohydrates, pp. 15-23. In H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (eds.). Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, UK.
  7. Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151 https://doi.org/10.1016/S1367-5931(00)00183-6
  8. Di Lernia, I., A. Morana, A. Ottombrino, S. Fusco, M. Rossi, and M. de Rosa. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409-416. https://doi.org/10.1007/s007920050086
  9. Galichet, A. and B. Belarbi. 1999. Cloning of an $\alpha$-glucosidase gene from Thermococcus hydrothermalis by functional complementation of a Saccharomyces cerevisiae mal11 mutant strain. FEBS Lett. 458: 188-192. https://doi.org/10.1016/S0014-5793(99)01155-2
  10. Giannesi, G. C., M. L. T. M. Polizeli, H. F. Terenzi, and J. A. Jorge. 2006. A novel $\alpha$-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterisation of the enzyme. Proc. Biochem. 41: 1729-1735. https://doi.org/10.1016/j.procbio.2006.03.017
  11. Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
  12. Hostinova, E., A. Solovicova, and J. Gasperik. 2005. Cloning and expression of a gene for an $\alpha$-glucosidase from Saccharomycopsis fibuligera homologous to family GH31 of yeast glucoamylases. Appl. Microbiol. Biotechnol. 69: 51-56. https://doi.org/10.1007/s00253-005-1971-9
  13. Hough, W. D. and M. J. Danson. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39-46. https://doi.org/10.1016/S1367-5931(99)80008-8
  14. Hung, V. S., Y. Hatada, S. Goda, J. Lu, Y. Hidaka, Z. Li, et al. 2005. $\alpha$-Glucosidase from a strain of deep-sea Geobacillus: A potential enzyme for the biosynthesis of complex carbohydrates. Appl. Microbiol. Biotechnol. 68: 757-765. https://doi.org/10.1007/s00253-005-1977-3
  15. Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, et al. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 8: 123-140. https://doi.org/10.1093/dnares/8.4.123
  16. Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel $\alpha$-glucosidase from Asperillus nidurans with strong transglycosylation activity. Appl. Environ. Microbiol. 68: 1250-1256. https://doi.org/10.1128/AEM.68.3.1250-1256.2002
  17. Kelly, C. T., M. Giblin, and W. M. Fogarty. 1986. Resolution, purification, and characterization of two extracellular glucohydrolases, $\alpha$-glucosidase and maltase of Bacillus licheniformis. Can. J. Microbiol. 32: 342-347. https://doi.org/10.1139/m86-066
  18. Kim, I. C., J. H. Cha, J. R. Kim, S. Y. Jang, B. C. Seo, T. K. Cheong, et al. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108-22114.
  19. Kim, Y. W., J. H. Choi, J. W. Kim, C. Park, J. W. Kim, H. Cha, et al. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874. https://doi.org/10.1128/AEM.69.8.4866-4874.2003
  20. Kinsella, B. T., A. Larkin, M. Bolton, and B. A. Cantwell. 1991. Molecular cloning and characterization of a Candida tsukubaensis $\alpha$-glucosidase gene in the yeast Saccharomyces cerevisiae. Curr. Genet. 20: 45-52. https://doi.org/10.1007/BF00312764
  21. Kobayash, I., M. Tokuda, T. Konda, H. Nakano, and S. Kitahata. 2003. Purification and characterization of a new type of $\alpha$- glucosidase from Paecilomyces lilacinus that has transglycosylation activity to produce $\alpha$-1,3 and $\alpha$-1,2 linked oligosaccharides. Biosci. Biotechnol. Biochem. 67: 29-35. https://doi.org/10.1271/bbb.67.29
  22. Kuriki, T. and T. Imanaka. 1989. Characterization of thermostable pullulanase from Bacillus stearothermophilus and the nucleotide sequence of the gene. J. Gen. Microbiol. 135: 1521-1528.
  23. Kurimoto, M., T. Nishimoto, T. Nakada, H. Chaen, S. Fukuda, and Y. Tsujisaka. 1997. Synthesis by an $\alpha$-glucosidase of glycosyltrehaloses with an isomaltosyl residue. Biosci. Biotechnol. Biochem. 61: 699-703. https://doi.org/10.1271/bbb.61.699
  24. Lee, S. S., S. He, and S. G. Withers. 2001. Identification of the catalytic nucleophile of the Family 31 $\alpha$-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate. Biochem. J. 359: 381-386.
  25. Linke, B., A. Rüdiger, G. Wittenberg, P. L. Jorgensen, and G. Antranikian. 1992. Production of heat-stable pullulanase and $\alpha$- glucosidase from the extremely thermophilic archaeon Pyrococcus woesei. DECHEMA Biotechnol. Conf. 5: 161-163.
  26. Mala, S., H. Dvorakova, R. Hrabal, and B. Kralova. 1999. Towards regioselective synthesis of oligosaccharides by use of $\alpha$-glucosidases with different substrate specificity. Carbohydr. Res. 322: 209-218. https://doi.org/10.1016/S0008-6215(99)00222-0
  27. Marín, D., D. Linde, and M. F. Lobato. 2006. Purification and biochemical characterization of an α-glucosidase from Xanthophyllomyces dendrorhus. Yeast 23: 117-125. https://doi.org/10.1002/yea.1345
  28. Nakao, M., T. Nakayama, M. Harada, A. Kakudo, H. Ikemoto, S. Kobayashi, and Y. Shibano. 1994. Purification and characterization of a Bacillus sp. SAM1606 thermostable alpha-glucosidase with transglycosylation activity. Appl. Microbiol. Biotechnol. 41: 337-343. https://doi.org/10.1007/BF00221229
  29. Oda, Y., H. Iwamoto, K. Hiromi, and K. Tonomura. 1993. Purification and characterization of $\alpha$-glucosidase from Torulaspora pretoriensis YK-1. Biosci. Biotechnol. Biochem. 57: 1902- 1905.
  30. Okuyama, M., Y. Tanimoto, T. Ito, A. Anzai, H. Mori, A. Kimura, et al. 2005. Purification and characterization of the hyperglycosylated extracellular $\alpha$-glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol. 37: 472-480. https://doi.org/10.1016/j.enzmictec.2004.06.018
  31. Nashiru, O., S. H. Koh, S. Y. Lee, and D. S. Lee. 2001. Novel $\alpha$-glucosidase from extreme thermophile Thermus caldophilus GK24. Biochem. Mol. Biol. 34: 347-354.
  32. Piller, K., R. M. Daniel, and H. H. Petach. 1996. Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: Enzyme activity at $130{^{\circ}C}$. Biochim. Biophys. Acta 1292: 197-205 https://doi.org/10.1016/0167-4838(95)00203-0
  33. Rolfsmeier, M. and P. Blum. 1995. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J. Bacteriol. 177: 482-485.
  34. Rolfsmeier, M., C. Haseltine, E. Bini, A. Clark, and P. Blum. 1998. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 180: 1287-1295.
  35. Suzuki, T., T. Iwasaki, T. Uzawa, K. Hara, N. Nemoto, T. Kon, et al. 2002. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6: 39-44. https://doi.org/10.1007/s007920100221
  36. Tanaka, Y., T. Aki, Y. Hidaka, Y. Furuya, S. Kawamoto, S. Shigeta, et al. 2002. Purification and characterization of a novel fungal $\alpha$-glucosidase from Mortierella alliacea with high starchhydrolytic activity. Biosci. Biotechnol. Biochem. 66: 2415- 2423. https://doi.org/10.1271/bbb.66.2415
  37. Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418. https://doi.org/10.3109/10409238909082556
  38. Watanabe, K., K. Miyake, and Y. Suzuki. 2001. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC 7064 oligo-1,6-glucosidase. Biosci. Biotechnol. Biochem. 65: 2058-2064. https://doi.org/10.1271/bbb.65.2058
  39. Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, et al. 2004. Purification and chracterization of Acremonium implicatum $\alpha$-glucosidase having regioselectivity for $\alpha$-1,3-glucosidic linkage. Biochim. Biophys. Acta 1700: 189-198. https://doi.org/10.1016/j.bbapap.2004.05.002

Cited by

  1. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential vol.53, pp.7, 2014, https://doi.org/10.1007/s00394-013-0649-9
  2. Molecular cloning, characterization, and application of a novel thermostable α-glucosidase from the hyperthermophilic archaeon Pyrobaculum aerophilum strain IM2 vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0024-0
  3. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11 vol.15, pp.None, 2013, https://doi.org/10.1186/s12896-015-0197-x
  4. Properties and applications of β‐glycosidase from Bacteroides thetaiotaomicron that specifically hydrolyses isoflavone glycosides vol.50, pp.6, 2013, https://doi.org/10.1111/ijfs.12786
  5. Broad substrate specificity of a hyperthermophilic α-glucosidase from Pyrobaculum arsenaticum vol.25, pp.6, 2013, https://doi.org/10.1007/s10068-016-0256-7
  6. Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi vol.7, pp.4, 2013, https://doi.org/10.3390/life7040046
  7. Starch biotransformation into isomaltooligosaccharides using thermostable alpha-glucosidase from Geobacillus stearothermophilus vol.6, pp.None, 2013, https://doi.org/10.7717/peerj.5086
  8. Biotechnological applications of archaeal enzymes from extreme environments vol.51, pp.None, 2013, https://doi.org/10.1186/s40659-018-0186-3
  9. Biocatalytic synthesis of 2‐ O ‐ α ‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α ‐glucosidase from Oryza sativa vol.16, pp.11, 2021, https://doi.org/10.1002/biot.202100199