DOI QR코드

DOI QR Code

Homologous Expression and T3SS-Dependent Secretion of TAP-Tagged Xo2276 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract and Its Direct In Vitro Recognition of Putative Target DNA Sequence

  • Kim, Seunghwan (Department of Advanced Technology Fusion, Konkuk University) ;
  • Nguyen, Thi-Dieu-Hanh (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Joohee (Department of Green Life Science, College of Convergence, Sangmyung University) ;
  • Hong, Myoung-Ki (Department of Advanced Technology Fusion, Konkuk University) ;
  • Pham, Tan-Viet (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ahn, Yeh-Jin (Department of Green Life Science, College of Convergence, Sangmyung University) ;
  • Lee, Byoung-Moo (Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Han, Ye Sun (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, Dong-Eun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Jeong-Gu (Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kang, Lin-Woo (Department of Biological Sciences, Konkuk University)
  • Received : 2012.07.23
  • Accepted : 2012.08.30
  • Published : 2013.01.28

Abstract

Xo2276 is a putative transcription activator-like effector (TALE) in Xanthomonas oryzae pv. oryzae (Xoo). Xo2276 was expressed with a TAP-tag at the C-terminus in Xoo cells to enable quantitative analysis of protein expression and secretion. Nearly all TAP-tagged Xo2276 existed in an insoluble form; addition of rice leaf extracts from a Xoosusceptible rice cultivar, Milyang23, significantly stimulated secretion of TAP-tagged Xo2276 into the medium. In a T3SS-defective Xoo mutant strain, secretion of TAPtagged Xo2276 was blocked. Xo2276 is a Xoo ortholog of Xanthomonas campestris pv. vesicatoria (Xcv) AvrBs3 and contains a conserved DNA-binding domain (DBD), which includes 19.5 tandem repeats of 34 amino acids. Xo2276- DBD was expressed in E. coli and purified. Direct in vitro recognition of Xo2276-DBD on a putative target DNA sequence was confirmed using an electrophoretic mobility shift assay. This is the first study measuring the homologous expression and secretion of Xo2276 in vitro using rice leaf extract and its direct in vitro binding to the specific target DNA sequence.

Keywords

References

  1. Bai, J., S. H. Choi, G. Ponciano, H. Leung, and J. E. Leach. 2000. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol. Plant Microbe Interact. 13: 1322-1329. https://doi.org/10.1094/MPMI.2000.13.12.1322
  2. Boch, J. and U. Bonas. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu. Rev. Phytopathol. 48: 419-436.
  3. Bogdanove, A. J., S. Schornack, and T. Lahaye. 2010. TAL effectors: Finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13: 394-401. https://doi.org/10.1016/j.pbi.2010.04.010
  4. Cornelis, G. R. and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735-774. https://doi.org/10.1146/annurev.micro.54.1.735
  5. Feldman, M. F. and G. R. Cornelis. 2003. The multitalented type III chaperones: All you can do with 15 kDa. FEMS Microbiol. Lett. 219: 151-158. https://doi.org/10.1016/S0378-1097(03)00042-9
  6. Galan, J. E. and A. Collmer. 1999. Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 284: 1322-1328. https://doi.org/10.1126/science.284.5418.1322
  7. He, S. Y., K. Nomura, and T. S. Whittam. 2004. Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694: 181-206. https://doi.org/10.1016/j.bbamcr.2004.03.011
  8. Kay, S., S. Hahn, E. Marois, G. Hause, and U. Bonas. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. https://doi.org/10.1126/science.1144956
  9. Kim, S. H., S. E. Lee, M. K. Hong, N. H. Song, B. Yoon, P. Viet, et al. 2011. Homologous expression and quantitative analysis of T3SS-dependent secretion of TAP-tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae induced by rice leaf extract. J. Microbiol. Biotechnol. 21: 679-685. https://doi.org/10.4014/jmb.1102.02011
  10. Lee, B. M., Y. J. Park, D. S. Park, H. W. Kang, J. G. Kim, E. S. Song, et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33: 577-586. https://doi.org/10.1093/nar/gki206
  11. Marois, E., G. Van den Ackerveken, and U. Bonas. 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant Microbe Interact. 15: 637-646. https://doi.org/10.1094/MPMI.2002.15.7.637
  12. Parsot, C., C. Hamiaux, and A. L. Page. 2003. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6: 7-14. https://doi.org/10.1016/S1369-5274(02)00002-4
  13. Roden, J. A., B. Belt, J. B. Ross, T. Tachibana, J. Vargas, and M. B. Mudgett. 2004. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. https://doi.org/10.1073/pnas.0407383101
  14. Salmond, G. P. C. and P. J. Reeves. 1993. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem. Sci. 18: 7-12. https://doi.org/10.1016/0968-0004(93)90080-7
  15. Schornack, S., A. Meyer, P. Romer, T. Jordan, and T. Lahaye. 2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J. Plant Physiol. 163: 256-272. https://doi.org/10.1016/j.jplph.2005.12.001
  16. Schulte, R. and U. Bonas. 1992. A Xanthomonas pathogenicity locus is induced by sucrose and sulfur-containing amino acids. Plant Cell 4: 79-86.
  17. Zhu, W., B. Yang, J. M. Chittoor, L. B. Johnson, and F. F. White. 1998. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol. Plant Microbe Interact. 11: 824-832. https://doi.org/10.1094/MPMI.1998.11.8.824

Cited by

  1. Crystal structure of XoLAP, a leucine aminopeptidase, from Xanthomonas oryzae pv. oryzae vol.51, pp.5, 2013, https://doi.org/10.1007/s12275-013-3234-2
  2. Crystallization and preliminary X‐ray crystallographic analysis of the XoGroEL chaperonin from Xanthomonas oryzae pv. oryzae vol.70, pp.5, 2014, https://doi.org/10.1107/s2053230x14006591
  3. Crystal Structures of Peptide Deformylase from Rice Pathogen Xanthomonas oryzae pv. oryzae in Complex with Substrate Peptides, Actinonin, and Fragment Chemical Compounds vol.64, pp.39, 2013, https://doi.org/10.1021/acs.jafc.6b02976
  4. Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae vol.17, pp.None, 2016, https://doi.org/10.1186/s12864-016-2657-7
  5. Transcriptional expression of aminoacyl tRNA synthetase genes of Xanthomonas oryzae pv. oryzae (Xoo) on rice-leaf extract treatment and crystal structure of Xoo glutamyl-tRNA synthetase vol.68, pp.5, 2017, https://doi.org/10.1071/cp16435