References
-
Alikhajeh, J., K. Khajeh, B. Ranjbar, H. Naderi-Manesh, Y. H. Lin, E. Liu, et al. 2010. The crystal structure of Bacillus amyloliquefaciens
$\alpha$ -amylase at high resolution: Implications for thermal stability. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66: 121-129. https://doi.org/10.1107/S1744309109051938 -
Bernfeld, P. 1955. Amylase,
$\alpha$ and$\beta$ . Methods Enzymol. 1: 149-151. https://doi.org/10.1016/0076-6879(55)01021-5 -
Boel, E., L. Brady, A. M. Brzozowski, Z. Derewenda, G. G. Dodson, V. J. Jensen, et al. 1990. Calcium-binding in
$\alpha$ - amylases: An X-ray diffraction study at 2.1 A resolution of two enzymes from Aspergillus. Biochemistry 29: 6244-6249. https://doi.org/10.1021/bi00478a019 -
Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, et al. 2000. Structural analysis of a chimeric bacterial
$\alpha$ -amylase: Highresolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107. https://doi.org/10.1021/bi0000317 -
Chen, X. and C. R. Matthews. 1994. Thermodynamic properties of the transition state for the rate-limiting step in the folding of the
$\alpha$ -subunit of tryptophan synthase. Biochemistry 33: 6356-6362. https://doi.org/10.1021/bi00186a040 - Chung, C. Y., S. L. Niemela, and R. H. Miller. 1989. One-step preparation of competent Escherichia coli : Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86: 2172-2175. https://doi.org/10.1073/pnas.86.7.2172
- D'Amico, S., J. C. Marx, C. Gerdy, and G. Feller. 2003. Activity stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896. https://doi.org/10.1074/jbc.M212508200
- Daniel, R. M. 1996. The upper limits of enzyme thermal stability. Enzyme. Microb. Technol. 19: 74-79. https://doi.org/10.1016/0141-0229(95)00174-3
- Declerck, N., M. Machius, G. Wiegand, R. Huber, and C. Gaillardin. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057. https://doi.org/10.1006/jmbi.2000.4025
- Eftink, M. R. and C. A. Ghiron. 1976. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16: 5546-5551.
- Fersht, A. 1999. Structure and Mechanism in Protein Science. W. H. Freeman and Co., New York.
- Fisher, C. L. and G. K. Pei. 1997. Modification of a PCR-based site-directed mutagenesis method. BioTechniques 23: 570-574.
-
Fitter, J., R. Herrmann, N. A. Dencher, A. Blume, and T. Hauss. 2001. Activity and stability of a thermostable
$\alpha$ -amylase compared to its mesophilic homologue: Mechanism of thermal adaptation. Biochemistry 40: 10723-10731. https://doi.org/10.1021/bi010808b - Gouda, M. D., S. A. Singh, A. G. A. Rao, M. S. Thakur, and N. G. Karanth. 2003. Thermal inactivation of glucose oxidase. J. Biol. Chem. 278: 24324-24333. https://doi.org/10.1074/jbc.M208711200
- Haghani, K., Kh. Khajeh, H. Naderi-Manesh, and B. Ranjbar. 2012. Evidence regarding the hypothesis that the histidinehistidine contact pairs may affect protein stability. Int. J. Biol. Macromol. 50: 1040-1047. https://doi.org/10.1016/j.ijbiomac.2011.12.009
-
Igarashi, K., H. Hagihara, and S. Ito. 2003. Protein engineering of detergent
$\alpha$ -amylases. Trends Glycosci. Glycotechnol. 82: 101-114. -
Khajeh, Kh., M. M. Shokri, S. M. Asghari, F. Moradian, A. Ghasemi, M. Sadeghi, et al. 2006. Acidic and proteolytic digestion of
$\alpha$ -amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis. Enzyme Microb. Technol. 38: 422-428. https://doi.org/10.1016/j.enzmictec.2005.06.021 - Kuroki, R., S. Kawakita, H. Nakamura, and K. Yutani. 1992. Entropic stabilization of a mutant human lysozyme induced by calcium-binding. Proc. Natl. Acad. Sci.USA 89: 6803-6807. https://doi.org/10.1073/pnas.89.15.6803
- Lam, S. Y., R. C. Y. Yeung, T. Yu, K. Sze, and K. Wong. 2011. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 9: e1001027. https://doi.org/10.1371/journal.pbio.1001027
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275.
-
Machius, M., G. Wiegand, and R. Huber. 1995. Crystal structure of calcium depleted Bacillus licheniformis
$\alpha$ -amylase at 2.2 Å resolution. J. Mol. Biol. 246: 545-559. https://doi.org/10.1006/jmbi.1994.0106 -
Machius, M., N. Declerck, R. Huber, and G. Wiegand. 1998. Activation of Bacillus licheniformis alpha-amylase through a disorder
$\rightarrow$ order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6: 281-292. https://doi.org/10.1016/S0969-2126(98)00032-X - Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. (Tokyo) 95: 699-702.
-
Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial
$\alpha$ -amylases. Biochim. Biophys. Acta. 1543: 253-274. https://doi.org/10.1016/S0167-4838(00)00240-5 - Protasevich, I., B. Ranjbar, V. Lobachov, A. Makarov, R. Gilli, C. Briand, et al. 1997. Conformation and thermal denaturation of apocalmodulin: Role of electrostatic mutations. Biochemistry 36: 2017-2024. https://doi.org/10.1021/bi962538g
- Saboury, A. A. and F. Karbassi. 2000. Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochim. Acta. 362: 121-129. https://doi.org/10.1016/S0040-6031(00)00579-7
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Schippers, P. H. and H. P. J. M. Dekkers. 1981. Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal. Chem. 53: 778-788. https://doi.org/10.1021/ac00229a008
-
Shirai, T., K. Igarashi, T. Ozawa, H. Hagihara, T. Kobayashi, K. Ozaki, and S. Ito. 2007. Ancestral sequence evolutionary trace and crystal structure analyses of alkaline
$\alpha$ -amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 66: 600-610. - Stein, R. A. and J. V. Staros. 1996. Thermal inactivation of the protein tyrosine kinase of the epidermal growth factor receptor. Biochemistry 35: 2878-2884. https://doi.org/10.1021/bi952350h
- Stryer, L. 1968. Fluorescence spectroscopy of proteins. Science 162: 526-540. https://doi.org/10.1126/science.162.3853.526
- Suvd, D., Z. Fujimoto, K. Takase, M. Matsumura, and H. Mizuno. 2001. Crystal structure of Bacillus stearothermophilus alpha-amylase: Possible factors determining the thermostability. J. Biochem. 129: 461-468. https://doi.org/10.1093/oxfordjournals.jbchem.a002878
- Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933- 18938.
- Takakuwa, T., T. Konno, and H. A. Meguro. 1985. New standard substance for calibration of circular dichroism: Ammonium d-10-camphorsulfonate. Anal. Sci. 1: 215-225. https://doi.org/10.2116/analsci.1.215
- Takkinen, K., R. F. Pettersson, N. Kalkkinen, I. Palva, H. Soderlund, and L. Kaariainen. 1983. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007-1013.
-
Tanaka, A. and E. Hoshino. 2002. Calcium-binding parameter of Bacillus amyloliquefaciens
$\alpha$ -amylase determined by inactivation kinetics. Biochem. J. 364: 635-639. https://doi.org/10.1042/BJ20011436 - Thompson, M. J. and D. Eisenberg. 1999. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290: 595-604. https://doi.org/10.1006/jmbi.1999.2889
- Tomazic, S. J. and A. M. Klibanov. 1988. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem. 263: 3086-3091.
-
Vallee, B. L., E. A. Stein, W. N. Sumerwell, and E. H. Fischer. 1959. Metal content of
$\alpha$ -amylases of various origins. J. Biol. Chem. 234: 2901-2905. - Varley, P. G. and R. H. Pain. 1991. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol. 220: 531-538 https://doi.org/10.1016/0022-2836(91)90028-5
- Vieille, C. and J. G. Zeikus. 1996. Thermozymes: Identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14: 183-190. https://doi.org/10.1016/0167-7799(96)10026-3
- Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.
Cited by
- Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability vol.98, pp.9, 2014, https://doi.org/10.1007/s00253-013-5375-y
- Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121 vol.38, pp.5, 2015, https://doi.org/10.1007/s00449-014-1330-2
- Effect of differential processing of the native and recombinant α-amylase from Bacillus amyloliquefaciens JJC33M on specificity and enzyme properties vol.7, pp.5, 2017, https://doi.org/10.1007/s13205-017-0954-8
- Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability vol.54, pp.6, 2013, https://doi.org/10.1134/s0003683819010204
- Improving the thermostability and acid resistance of Rhizopus oryzae α‐amylase by using multiple sequence alignment based site‐directed mutagenesis vol.67, pp.4, 2013, https://doi.org/10.1002/bab.1907
- The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes vol.250, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2020.126202
- The desirable salt bridges in amylases: Distribution, configuration and location vol.354, pp.None, 2013, https://doi.org/10.1016/j.foodchem.2021.129475