DOI QR코드

DOI QR Code

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)

  • Zonouzi, Roseata (Department of Biology, Science and Research Branch, Islamic Azad University) ;
  • Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Monajjemi, Majid (Department of Chemistry, Science and Research Branch, Islamic Azad University) ;
  • Ghaemi, Naser (Department of Biotechnology, University College of Science, University of Tehran)
  • Received : 2012.05.31
  • Accepted : 2012.08.29
  • Published : 2013.01.28

Abstract

In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.

Keywords

References

  1. Alikhajeh, J., K. Khajeh, B. Ranjbar, H. Naderi-Manesh, Y. H. Lin, E. Liu, et al. 2010. The crystal structure of Bacillus amyloliquefaciens $\alpha$-amylase at high resolution: Implications for thermal stability. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66: 121-129. https://doi.org/10.1107/S1744309109051938
  2. Bernfeld, P. 1955. Amylase, $\alpha$and $\beta$. Methods Enzymol. 1: 149-151. https://doi.org/10.1016/0076-6879(55)01021-5
  3. Boel, E., L. Brady, A. M. Brzozowski, Z. Derewenda, G. G. Dodson, V. J. Jensen, et al. 1990. Calcium-binding in $\alpha$- amylases: An X-ray diffraction study at 2.1 A resolution of two enzymes from Aspergillus. Biochemistry 29: 6244-6249. https://doi.org/10.1021/bi00478a019
  4. Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, et al. 2000. Structural analysis of a chimeric bacterial $\alpha$-amylase: Highresolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107. https://doi.org/10.1021/bi0000317
  5. Chen, X. and C. R. Matthews. 1994. Thermodynamic properties of the transition state for the rate-limiting step in the folding of the $\alpha$-subunit of tryptophan synthase. Biochemistry 33: 6356-6362. https://doi.org/10.1021/bi00186a040
  6. Chung, C. Y., S. L. Niemela, and R. H. Miller. 1989. One-step preparation of competent Escherichia coli : Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86: 2172-2175. https://doi.org/10.1073/pnas.86.7.2172
  7. D'Amico, S., J. C. Marx, C. Gerdy, and G. Feller. 2003. Activity stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896. https://doi.org/10.1074/jbc.M212508200
  8. Daniel, R. M. 1996. The upper limits of enzyme thermal stability. Enzyme. Microb. Technol. 19: 74-79. https://doi.org/10.1016/0141-0229(95)00174-3
  9. Declerck, N., M. Machius, G. Wiegand, R. Huber, and C. Gaillardin. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057. https://doi.org/10.1006/jmbi.2000.4025
  10. Eftink, M. R. and C. A. Ghiron. 1976. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16: 5546-5551.
  11. Fersht, A. 1999. Structure and Mechanism in Protein Science. W. H. Freeman and Co., New York.
  12. Fisher, C. L. and G. K. Pei. 1997. Modification of a PCR-based site-directed mutagenesis method. BioTechniques 23: 570-574.
  13. Fitter, J., R. Herrmann, N. A. Dencher, A. Blume, and T. Hauss. 2001. Activity and stability of a thermostable $\alpha$-amylase compared to its mesophilic homologue: Mechanism of thermal adaptation. Biochemistry 40: 10723-10731. https://doi.org/10.1021/bi010808b
  14. Gouda, M. D., S. A. Singh, A. G. A. Rao, M. S. Thakur, and N. G. Karanth. 2003. Thermal inactivation of glucose oxidase. J. Biol. Chem. 278: 24324-24333. https://doi.org/10.1074/jbc.M208711200
  15. Haghani, K., Kh. Khajeh, H. Naderi-Manesh, and B. Ranjbar. 2012. Evidence regarding the hypothesis that the histidinehistidine contact pairs may affect protein stability. Int. J. Biol. Macromol. 50: 1040-1047. https://doi.org/10.1016/j.ijbiomac.2011.12.009
  16. Igarashi, K., H. Hagihara, and S. Ito. 2003. Protein engineering of detergent $\alpha$-amylases. Trends Glycosci. Glycotechnol. 82: 101-114.
  17. Khajeh, Kh., M. M. Shokri, S. M. Asghari, F. Moradian, A. Ghasemi, M. Sadeghi, et al. 2006. Acidic and proteolytic digestion of $\alpha$-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis. Enzyme Microb. Technol. 38: 422-428. https://doi.org/10.1016/j.enzmictec.2005.06.021
  18. Kuroki, R., S. Kawakita, H. Nakamura, and K. Yutani. 1992. Entropic stabilization of a mutant human lysozyme induced by calcium-binding. Proc. Natl. Acad. Sci.USA 89: 6803-6807. https://doi.org/10.1073/pnas.89.15.6803
  19. Lam, S. Y., R. C. Y. Yeung, T. Yu, K. Sze, and K. Wong. 2011. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 9: e1001027. https://doi.org/10.1371/journal.pbio.1001027
  20. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275.
  21. Machius, M., G. Wiegand, and R. Huber. 1995. Crystal structure of calcium depleted Bacillus licheniformis $\alpha$-amylase at 2.2 Å resolution. J. Mol. Biol. 246: 545-559. https://doi.org/10.1006/jmbi.1994.0106
  22. Machius, M., N. Declerck, R. Huber, and G. Wiegand. 1998. Activation of Bacillus licheniformis alpha-amylase through a disorder$\rightarrow$order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6: 281-292. https://doi.org/10.1016/S0969-2126(98)00032-X
  23. Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. (Tokyo) 95: 699-702.
  24. Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial $\alpha$-amylases. Biochim. Biophys. Acta. 1543: 253-274. https://doi.org/10.1016/S0167-4838(00)00240-5
  25. Protasevich, I., B. Ranjbar, V. Lobachov, A. Makarov, R. Gilli, C. Briand, et al. 1997. Conformation and thermal denaturation of apocalmodulin: Role of electrostatic mutations. Biochemistry 36: 2017-2024. https://doi.org/10.1021/bi962538g
  26. Saboury, A. A. and F. Karbassi. 2000. Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochim. Acta. 362: 121-129. https://doi.org/10.1016/S0040-6031(00)00579-7
  27. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  28. Schippers, P. H. and H. P. J. M. Dekkers. 1981. Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal. Chem. 53: 778-788. https://doi.org/10.1021/ac00229a008
  29. Shirai, T., K. Igarashi, T. Ozawa, H. Hagihara, T. Kobayashi, K. Ozaki, and S. Ito. 2007. Ancestral sequence evolutionary trace and crystal structure analyses of alkaline $\alpha$-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 66: 600-610.
  30. Stein, R. A. and J. V. Staros. 1996. Thermal inactivation of the protein tyrosine kinase of the epidermal growth factor receptor. Biochemistry 35: 2878-2884. https://doi.org/10.1021/bi952350h
  31. Stryer, L. 1968. Fluorescence spectroscopy of proteins. Science 162: 526-540. https://doi.org/10.1126/science.162.3853.526
  32. Suvd, D., Z. Fujimoto, K. Takase, M. Matsumura, and H. Mizuno. 2001. Crystal structure of Bacillus stearothermophilus alpha-amylase: Possible factors determining the thermostability. J. Biochem. 129: 461-468. https://doi.org/10.1093/oxfordjournals.jbchem.a002878
  33. Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933- 18938.
  34. Takakuwa, T., T. Konno, and H. A. Meguro. 1985. New standard substance for calibration of circular dichroism: Ammonium d-10-camphorsulfonate. Anal. Sci. 1: 215-225. https://doi.org/10.2116/analsci.1.215
  35. Takkinen, K., R. F. Pettersson, N. Kalkkinen, I. Palva, H. Soderlund, and L. Kaariainen. 1983. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007-1013.
  36. Tanaka, A. and E. Hoshino. 2002. Calcium-binding parameter of Bacillus amyloliquefaciens $\alpha$-amylase determined by inactivation kinetics. Biochem. J. 364: 635-639. https://doi.org/10.1042/BJ20011436
  37. Thompson, M. J. and D. Eisenberg. 1999. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290: 595-604. https://doi.org/10.1006/jmbi.1999.2889
  38. Tomazic, S. J. and A. M. Klibanov. 1988. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem. 263: 3086-3091.
  39. Vallee, B. L., E. A. Stein, W. N. Sumerwell, and E. H. Fischer. 1959. Metal content of $\alpha$-amylases of various origins. J. Biol. Chem. 234: 2901-2905.
  40. Varley, P. G. and R. H. Pain. 1991. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol. 220: 531-538 https://doi.org/10.1016/0022-2836(91)90028-5
  41. Vieille, C. and J. G. Zeikus. 1996. Thermozymes: Identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14: 183-190. https://doi.org/10.1016/0167-7799(96)10026-3
  42. Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.

Cited by

  1. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability vol.98, pp.9, 2014, https://doi.org/10.1007/s00253-013-5375-y
  2. Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121 vol.38, pp.5, 2015, https://doi.org/10.1007/s00449-014-1330-2
  3. Effect of differential processing of the native and recombinant α-amylase from Bacillus amyloliquefaciens JJC33M on specificity and enzyme properties vol.7, pp.5, 2017, https://doi.org/10.1007/s13205-017-0954-8
  4. Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability vol.54, pp.6, 2013, https://doi.org/10.1134/s0003683819010204
  5. Improving the thermostability and acid resistance of Rhizopus oryzae α‐amylase by using multiple sequence alignment based site‐directed mutagenesis vol.67, pp.4, 2013, https://doi.org/10.1002/bab.1907
  6. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes vol.250, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2020.126202
  7. The desirable salt bridges in amylases: Distribution, configuration and location vol.354, pp.None, 2013, https://doi.org/10.1016/j.foodchem.2021.129475