DOI QR코드

DOI QR Code

Generation and Evaluation of High ${\beta}$-Glucan Producing Mutant Strains of Sparassis crispa

  • Kim, Seung-Rak (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Kang, Hyeon-Woo (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
  • Received : 2013.05.20
  • Accepted : 2013.06.24
  • Published : 2013.09.30

Abstract

A chemical mutagenesis technique was employed for development of mutant strains of Sparassis crispa targeting the shortened cultivation time and the high ${\beta}$-glucan content. The homogenized mycelial fragments of S. crispa IUM4010 strain were treated with 0.2 vol% methyl methanesulfonate, an alkylating agent, yielding 199 mutant strains. Subsequent screening in terms of growth and ${\beta}$-glucan content yielded two mutant strains, B4 and S7. Both mutants exhibited a significant increase in ${\beta}$-glucan productivity by producing 0.254 and 0.236 mg soluble ${\beta}$-glucan/mg dry cell weight for the B4 and S7 strains, respectively, whereas the wild type strain produced 0.102 mg soluble ${\beta}$-glucan/mg dry cell weight. The results demonstrate the usefulness of chemical mutagenesis for generation of mutant mushroom strains.

Keywords

References

  1. Nameda S, Harada T, Miura NN, Adachi Y, Yadomae T, Nakajima M, Ohno N. Enhanced cytokine synthesis of leukocytes by a beta-glucan preparation, SCG, extracted from a medicinal mushroom, Sparassis crispa. Immunopharmacol Immunotoxicol 2003;25;321-35. https://doi.org/10.1081/IPH-120024500
  2. Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-beta-D-glucan SCG in DBA/2 mice in vitro. J Interferon Cytokine Res 2004;24;478-89. https://doi.org/10.1089/1079990041689656
  3. Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamidetreated mice. Microbiol Immunol 2006;50;687-700. https://doi.org/10.1111/j.1348-0421.2006.tb03841.x
  4. Kim HH, Lee S, Singh TS, Choi JK, Shin TY, Kim SH. Sparassis crispa suppresses mast cell-mediated allergic inflammation: role of calcium, mitogen-activated protein kinase and nuclear factor-$\kappa$B. Int J Mol Med 2012;30;344-50. https://doi.org/10.3892/ijmm.2012.1000
  5. Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim Y, Han SB. Induction of dendritic cell maturation by $\beta$-glucan isolated from Sparassis crispa. Int Immunopharmacol 2010;10;1284-94. https://doi.org/10.1016/j.intimp.2010.07.012
  6. Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull 2000;23;866-72. https://doi.org/10.1248/bpb.23.866
  7. Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Antiangiogenic and anti-metastatic effects of beta-1,3-D-glucan purified from hanabiratake, Sparassis crispa. Biol Pharm Bull 2009;32;259-63. https://doi.org/10.1248/bpb.32.259
  8. Park HG, Shim YY, Choi SO, Park WM. New method development for nanoparticle extraction of water-soluble beta-(1-->3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J Agric Food Chem 2009;57;2147-54. https://doi.org/10.1021/jf802940x
  9. Douglas CM. Fungal beta(1,3)-D-glucan synthesis. Med Mycol 2001;39 Suppl 1;55-66. https://doi.org/10.1080/mmy.39.1.55.66
  10. Kelly R, Register E, Hsu MJ, Kurtz M, Nielsen J. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J Bacteriol 1996;178;4381-91.
  11. Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB, Yabe T, Yamada-Okabe T, Arisawa M, Watanabe T, Yamada-Okabe H. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J Bacteriol 1997;179;4096-105.
  12. Cheong JC, Park JS, Hong IP, Seok SJ, Jhune CS, Lee CJ. Cultural characteristics of cauliflower mushroom, Sparassis crispa. Kor J Mycol 2008;36;16-21. https://doi.org/10.4489/KJM.2008.36.1.016
  13. Shim JO, Son SG, Yoon SO, Lee YS, Lee TS, Lee SS, Lee KD, Lee MW. The optimal factors for the mycelial growth of Sparassis crispa. Kor J Mycol 1998;26;39-46.
  14. Lin JH, Yang SS. Mycelium and polysaccharide production of Agaricus blazei Murrill by submerged fermentation. J Microbiol Immunol Infect 2006;39;98-108.
  15. Lee J, Kang HW, Kim SW, Lee CY, Ro HS. Breeding of new strains of mushroom by basidiospore chemical mutagenesis. Mycobiology 2011;39;272-7. https://doi.org/10.5941/MYCO.2011.39.4.272
  16. Liu Z, Zhang K, Lin JF, Guo LQ. Breeding cold tolerance strain by chemical mutagenesis in Volvariella volvacea. Sci Horticult 2011;130:18-24. https://doi.org/10.1016/j.scienta.2011.06.020
  17. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31;426-8. https://doi.org/10.1021/ac60147a030