Phenolic Compounds from Caesalpinia sappan and Their Inhibitory Effects on LPS-induced NO Production in RAW264.7 Cells

  • Min, Byung Sun (College of Pharmacy, Catholic University of Daegu) ;
  • Cuong, To Dao (College of Pharmacy, Catholic University of Daegu)
  • Received : 2013.04.18
  • Accepted : 2013.04.23
  • Published : 2013.09.30

Abstract

Thirteen phenolic compounds, 1,4-dimethoxybenzene (1), 3,4-dihydroxybenzaldehyde (2), (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylaldehyde (3), 3,7-dihydroxy-4H-chromen-4-one (4), 2,3-dihydroxy-1-(3,4-dihydroxyphenyl)propan-1-one (5), 4-hydroxy-3-methoxybenzoic acid (6), 4-hydroxy-3,5-dimethoxybenzoic acid (7), methyl 3,4-dihydroxybenzoate (8), 4-hydroxy-3,5-dimethoxybenzaldehyde (9), 3,4-dihydroxybenzoic acid (10), 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one (11), 2,4,6-trihydroxybenzaldehyde (12) and benzene-1,2,4-triol (13) were isolated from the heartwood of Caesalpinia sappan. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW264.7 cells. Among them, compounds 3 and 8 showed strong inhibitory activities toward the LPS-induced NO production in macrophage RAW264.7 cells with $IC_{50}$ values of 14.5 and 21.5 ${\mu}M$, respectively.

Keywords

References

  1. Ahn, K.S., Noh, E.J., Zhao, H.L., Jung, S.H., Kang, S.S., and Kim, Y.S., Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factorkB activation in RAW 264.7 cells. Life Sci. 76, 2315-2328 (2005). https://doi.org/10.1016/j.lfs.2004.10.042
  2. Ana, C.M.M., Adam, C.G., Humberto, G.P., and Jesus, C.M., Development and validation of a High Performance Liquid Chromatography-Diode Array Detection method for the determination of aging markers in tequila. J. Chromatograph. A. 1213, 218-223 (2008). https://doi.org/10.1016/j.chroma.2008.10.018
  3. Bae, I.K., Min, H.Y., Han, A.R., Seo, E.K., and Lee, S.K., Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 513, 237-242 (2005). https://doi.org/10.1016/j.ejphar.2005.03.011
  4. Bitzer, C., Brasse, G., Dettner, K., and Schulz, S., Benzoic acid derivatives in a hypogastrurid collembolan: temperature-dependent formation and biological significance as deterrents. J. Chem. Ecol. 30, 1591-602 (2004). https://doi.org/10.1023/B:JOEC.0000042070.99126.b9
  5. Cuong, T.D., Hung, T.M., Kim, J.C., Kim, E.H., Woo, M.H., Choi, J.S., Lee, J.H., and Min, B.S., Phenolic Compounds from Caesalpinia sappan Heartwood and Their Anti-inflammaory Activity. J. Nat. Prod. 75, 2069-2075 (2012). https://doi.org/10.1021/np3003673
  6. Friedman, M., Henika, P.R., and Mandrell, R.E., Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 66, 1811-1821 (2003). https://doi.org/10.4315/0362-028X-66.10.1811
  7. Fuke, C., Yamahara, J., Shimokawa, T., Kinjo, J., Tomimatsu, T., and Nohara, T., Two aromatic compounds related to brazilin from Caesalpinia sappan. Phytochemistry 24, 2403-2405 (1985). https://doi.org/10.1016/S0031-9422(00)83051-4
  8. Hu, C.M., Kang, J.J., Lee, C.C., Li, C.H., Liao, J.W., and Cheng, Y.W., Induction of vasorelaxation through activation of nitric oxide syntheses in endothelial cells by brazilin. Eur. J. Pharmacol. 468, 37- 45 (2003). https://doi.org/10.1016/S0014-2999(03)01639-X
  9. Hu, C.M., Liu, Y.H., Cheah, K.P., Li, J.S, Lam, C.S., Yu, W.Y., and Choy, C.S., Heme oxygenase-1 mediates the inhibitory actions of brazilin in RAW264.7 macrophages stimulated with lipopolysaccharide. J. Ethnopharmacol. 121, 79-85 (2009). https://doi.org/10.1016/j.jep.2008.09.030
  10. Jan, K. C., Ho, C.T., and Hwang, L.S., Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Mol. Nutr. Food Res. 53, 36-43 (2009). https://doi.org/10.1002/mnfr.200800214
  11. Lai, W.C., Wang, H.C., Chen, G.Y., Yang, J.C., Korinek, M., Hsieh, C.J., Noraki, H., Hayashi, K.I., Wu, C.C., Wu, Y.C., and Chang, F.R., Using the pER8 : GUS Reporter System to Screen for Phytoestrogens from Caesalpinia sappan. J. Nat. Prod. 74, 1698-1706 (2011). https://doi.org/10.1021/np100920q
  12. Lee, M.J., Lee, H.S., Jung, H.J., Lee, C.S., Kim, J.E., Moon, H.I., and Park, W.H., Caesalpinia sappan L. ameliorates hypercholesterolemia in C57BL/6 mice and suppresses inflammatory responses in human umbilical vein endothelial cells (HUVECs) by antioxidant mechanism. Immunopharmacol. Immunotoxicol. 32, 671-679 (2010). https://doi.org/10.3109/08923971003671116
  13. Li, Y., He, X., Liu, Z., Huang, Y., Lan, Y., Wang, A., and Wang, Y., Chemical constituents of flowers from Polygonum orientale. Zhongguo Zhong Yao Za Zhi 34, 2613-2615 (2009).
  14. Liu, A.L., Shu, S.H., Qin, H.L., Lee, S.M., Wang, Y.T., and Du, G.H., In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta Med. 75, 337-339 (2009). https://doi.org/10.1055/s-0028-1112208
  15. Liya L. and Navindra P.S., Further Investigation into Maple Syrup Yields 3 New Lignans, a New Phenylpropanoid, and 26 Other Phytochemicals. J. Agric. Food Chem. 59, 7708-7716 (2011). https://doi.org/10.1021/jf2011613
  16. Ma, Q.H., Shi, X.F., Fan, B., and Liu, D.Y., Study on the chemical constituents from Patrinia scabra. Zhong Yao Cai 35, 1257-1259 (2012).
  17. Min, B.S., Cuong, T.D., Hung, T.M., Min, B.K., Shin, B.S., and Woo, M. H., Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 22, 7436-7439 (2012). https://doi.org/10.1016/j.bmcl.2012.10.055
  18. Murakami, A. and Ohigashi, H., Targeting NOX, iNOS and COX-2 in inflammatory cells: chemoprevention using food photochemical. Int. J. Cancer 121, 2357-2363 (2007). https://doi.org/10.1002/ijc.23161
  19. Nagai, M., Nagumo, S., Eguchi, I., Lee, S.M., and Suzuki, T., Sappanchalcone from Caesalpinia sappan L., the proposed biosynthetic precursor of brazilin. Yakugaku Zasshi 104, 935-938 (1984). https://doi.org/10.1248/yakushi1947.104.9_935
  20. Oh, S.R., Kim, D.S., Lee, I.S., Jung, K.Y., Lee, J.J., and Lee, H.K., Anticomplementary activity of constituents from the heartwood of Caesalpinia sappan. Planta Med. 64, 456-458 (1998). https://doi.org/10.1055/s-2006-957481
  21. Peng, W., Han, T., Liu, Q., and Qin, L., Chemical constituents from aerial part of Atractylodes macrocephala. Zhongguo Zhong Yao Za Zhi 36, 578-581 (2011).
  22. Qu, G., Yue, X., An, F., Dai, S., Li, G., and Li, B., Chemical constituents contained in Salvia castanea. Zhongguo Zhong Yao Za Zhi. 37, 1985- 1989 (2012).
  23. Saitoh, T., Sakashita, S., Nakata, H., Shimokawa, T., Kinjo, J.E., Yamahara, J., Yamasaki, M., and Nohara, T., 3-Benzylchroman derivatives related to brazilin from Sappan Lignum. Chem. Pharm. Bull. 34, 2506-3547 (1986). https://doi.org/10.1248/cpb.34.2506
  24. Schottenfild, D. and Beebe-Dimmer, J., Chronic inflammation: A common and important factor in the pathogenesis of Neoplasia. Cancer J. Clin. 56, 69-83 (2006). https://doi.org/10.3322/canjclin.56.2.69
  25. Shen, J., Zhang, H., Lin, H., Su, H., Xing, D., and Du, L., Brazilein protects the brain against focal cerebral ischemia reperfusion injury correlating to inflammatory response suppression. Eur. J. Pharmacol. 558, 88-95 (2007). https://doi.org/10.1016/j.ejphar.2006.11.059
  26. Shimokawa, T., Kinjo, J., Yamahara, J., Yamasaki, M., and Nohara, T., Two novel aromatic compounds from Caesalpinia sappan. Chem. Pharm. Bull. 33, 3545-3547 (1985). https://doi.org/10.1248/cpb.33.3545
  27. Stalin, T. and Rajendiran, N., Effects of solvent, pH and beta-cyclodextrin on the photophysical properties of 4-hydroxy-3,5-dimethoxybenzaldehyde: intramolecular charge transfer associated with hydrogen bonding effect. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 61, 3087-3096 (2005). https://doi.org/10.1016/j.saa.2004.11.034
  28. Stalin, T. and Rajendiran, N., A study on the spectroscopy and photophysics of 4-hydroxy-3-methoxybenzoic acid in different solvents, pH and $\beta$-cyclodextrin. J. Mol. Struc. 794, 35-45 (2006). https://doi.org/10.1016/j.molstruc.2006.01.038
  29. Stephane, B.B., Roland, B., and Alain, C., Photochemistry of Methoxyhydroquinone and Methoxy-p-benzoquinone in Solution Related to the Photo Yellowing of the Lignocellulosics. Photochem Photobiol. 74, 542-548 (2001). https://doi.org/10.1562/0031-8655(2001)074<0542:POMAMP>2.0.CO;2
  30. Studer, R., Jaffurs, D., Stefanovic-Racic, M., Robbins, P.D., and Evans, C.H., Nitric oxide in osteoarthritis. Osteoarthritis Cartilage 7, 377- 379 (1999). https://doi.org/10.1053/joca.1998.0216
  31. Vane, J.R., Mitchell, J.A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall, J., and Willoughby, D.A., Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Nad. Acad. Sci. 91, 2046-2050 (1994). https://doi.org/10.1073/pnas.91.6.2046
  32. Washiyama, M., Sasaki, Y., Hosokawa, T., and Nagumo, S., Antiinflammatory constituents of Sappan Lignum. Biol. Pharm. Bull. 32, 941-944 (2009). https://doi.org/10.1248/bpb.32.941
  33. Yodsaoue, O., Cheenpracha, S., Karalai, C., Ponglimanont, C., and Tewtrakul, S., Anti-allergic activity of principles from the roots and heartwood of Caesalpinia sappan on antigen-induced betahexosaminidase release. Phytother. Res. 23, 1028-1031 (2009). https://doi.org/10.1002/ptr.2670
  34. Zedler, S. and Faist, E., The impact of endogenous triggers on traumaassociated inflammation. Curr. Opin. Crit. Care. 12, 595-601 (2006). https://doi.org/10.1097/MCC.0b013e3280106806