References
- Babuska, I. and Melenk, J.M. (1997), "Partition of unity method", Int. J. Numer. Meth. Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
- Babuska, I., Caloz, G. and Osborn, J.E. (1994), "Special finite element methods for a class of second order elliptic problems with rough coefficients", SIAM J Numer. Anal., 31, 945-981. https://doi.org/10.1137/0731051
- Cecka, C., Lew, A. and Darve, E. (2011), "Assembly of finite element methods on graphics processors", Int. J. Numer. Meth. Eng., 85(5), 640-669. https://doi.org/10.1002/nme.2989
- DOE Exascale Initiative Roadmap (2009), Architecture and Technology Workshop, San Diego, December.
- DOE Office of Science Summary report of the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee (2010), The opportunities and challenges of exascale computing.
- Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 139(1-4), 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
- Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three-dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
- Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite elementmethod for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. Mech. Eng., 190, 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4
- Duarte, C.A. and Kim, D.J. (2008), "Analysis and applications of a generalized finite element method with global-local enrichment functions", Comput. Meth. Appl. Mech. Eng., 197(6-8), 487-504. https://doi.org/10.1016/j.cma.2007.08.017
- Karatarakis, A., Metsis, P. and Papadrakakis, M. (2013), "GPU-Acceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods", Comput. Meth. Appl. Mech. Eng., 258, 63-80. https://doi.org/10.1016/j.cma.2013.02.011
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Meth. Appl.Mech. Eng., 153(1-2), 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
- O'Hara, P., Duarte, C.A. and Eason, T. (2009), "Generalized finite element analysis for three dimensional problems exhibiting sharp thermal gradients", Comput. Meth. Appl. Mech. Eng., 198, 1857-1871. https://doi.org/10.1016/j.cma.2008.12.024
- Simone, A., Duarte C.A. and Van der Giessen E. (2006), "A generalized finite element method for polycrystals with discontinuous grain boundaries", Int. J. Numer. Meth. Eng., 67, 1122-1145. https://doi.org/10.1002/nme.1658
- Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181(1-3), 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9
- Strouboulis, T., Copps, K. and Babuska, I. (2000), "The generalized finite element method: an example of its implementation and illustration of its performance", Int. J. Numer. Meth. Eng., 47, 1401-1417. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
- Strouboulis, T., Copps, K. and Babuska, I. (2001), "The generalized finite element method", Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. https://doi.org/10.1016/S0045-7825(01)00188-8
- Strouboulis, T., Zhang, L. and Babuska, I. (2003), "Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids", Comput. Meth. Appl. Mech. Eng., 192, 3109-3161. https://doi.org/10.1016/S0045-7825(03)00347-5
- Strouboulis, T., Zhang, L. and Babuska, I. (2004), "p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems", Int. J. Numer. Meth. Eng., 60, 1639-1672. https://doi.org/10.1002/nme.1017
- Strouboulis, T., Zhang, L., Wang, D. and Babuska, I. (2006), "A posteriori error estimation for generalized finite element methods", Comput. Meth. Appl. Mech. Eng., 195, 852-879. https://doi.org/10.1016/j.cma.2005.03.004
- Strouboulis, T., Babuska, I. and Hidajat, R. (2006), "The generalized finite element method for Helmholtz equation: theory, computation and open problems", Comput. Meth. Appl. Mech. Eng., 195, 4711-4731. https://doi.org/10.1016/j.cma.2005.09.019
- Strouboulis, T., Hidajat, R. and Babuska, I. (2008), "The generalized finite element method for Helmholtz equation, part II: effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment", Comput. Meth. Appl. Mech. Eng., 197, 364-380. https://doi.org/10.1016/j.cma.2007.05.019
- Tian, R. (2012), "Co-design thinking towards exascale computing", Inform. Tech. Letter, 10(3), 50-63. (in Chinese)
- Tian, R. and Sun, N. (2013), "Some considerations about exascale computing in China", Commun. China Comput. Feder., 9(2), 52-60. (in Chinese)
- Tian, R. (2013), "Extra-dof-free and linearly independent enrichments in GFEM", Comput. Meth. Appl. Mech. Eng., to appear.
- http://www.top500.org/project/linpack/
- http://nvworld.ru/files/articles/calculations-on-gpu-advantages-fermi/fermipeformance.pdf
- http://code.google.com/p/cusp-library/
Cited by
- Extra-dof-free and linearly independent enrichments in GFEM vol.266, pp.None, 2013, https://doi.org/10.1016/j.cma.2013.07.005