References
- Babuska, I., Ihlenburg, F., Paik, E. and Sauter, S. (1995), "A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution", Comput. Meth. Appl. M., 128(3-4), 325-359. https://doi.org/10.1016/0045-7825(95)00890-X
- Baiges, J. and Codina, R. (2013), "A variational multiscale method with subscales on the element boundaries for the Helmholtz equation", Int. J. Numer. Meth. Eng., 93(6), 664-684. https://doi.org/10.1002/nme.4406
- Belytschko, T. and Mullen, R. (1978), "On dispersive properties of finite element solutions", Modern Problems in Elastic Wave Propagation, John Wiley & Sons, Ltd.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
- Bouillard, P. and Suleau, S. (1998), "Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of pollution effect", Comput. Meth. Appl. Mech. Eng., 161, 317-335.
- Franca, L.P., Madureira, A.L. and Valentin, F. (2005), "Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions", Comput. Meth. Appl. Mech. Eng., 194(27-29), 3006-3021. https://doi.org/10.1016/j.cma.2004.07.029
- Farhat, C., Harari, I. and Franca, L.P. (2001), "The discontinuous enrichment method", Comput. Meth. Appl. Mech. Eng., 190, 6455-6479. https://doi.org/10.1016/S0045-7825(01)00232-8
- Harari, I. and Hughes, T.J.R. (1991), "Finite element method for the Helmholtz equation in an exterior domain: Model problems", Comput. Meth. Appl. Mech. Eng., 87(1), 59-96. https://doi.org/10.1016/0045-7825(91)90146-W
- Harari, I. and Hughes, T.J.R. (1992), "Galerkin/least squares finite element method for the reduced wave equation with non-reflecting boundary conditions", Comput. Meth. Appl. Mech. Eng., 98(3), 441-454.
- Harari, I. and Gosteev, K. (2007), "Bubble-based stabilization for the Helmholtz equation", Int. J. Numer. Meth. Eng., 70(10), 1241-1260. https://doi.org/10.1002/nme.1930
- Harari, I. (2008), "Multiscale finite elements for acoustics: continuous, discontinuous, and stabilized methods", Int. J. Numer. Meth. Eng., 6, 511-531.
- Hu, W., Wu, C.T. and Koishi, M. (2012), "A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers", Finite Elem. Anal. Des., 50, 161-172. https://doi.org/10.1016/j.finel.2011.09.007
- Hughes, T.J.R., Scovazzi, G. and Franca, L.P. (2004), "Multiscale and stabilized methods", Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd, 3.
- Hughes, T.J.R. and Sangalli, G. (2007), "Variational multiscale analysis: the fine-scale Green's function, projection, optimization, localization, and the stabilized methods", SIAM J. Numer. Anal., 45(2), 539-557. https://doi.org/10.1137/050645646
- Ihlenburg, F. and Babuska, I. (1995), "Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of FEM", Comput. Math. Appl., 30(9), 9-37.
- Ihlenburg, F. and Babuska, I. (1997), "Finite element solution of the Helmholtz equation with high wave number Part II: The h-p version of FEM", SIAM J. Numer. Anal., 34(1), 315-358. https://doi.org/10.1137/S0036142994272337
- Lai, S.J., Wang, B.Z. and Duan, Y. (2010), "Solving Helmholtz equation by meshless radial basis functions method", Prog. Electromagnetics Res. B, 24, 351-367. https://doi.org/10.2528/PIERB10062303
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fl., 20(8-9), 1081-1106. https://doi.org/10.1002/fld.1650200824
- Liu, W.K., Hao, W., Chen, Y., Jun, S. and Gosz, J. (1997), "Multiresolution reproducing kernel particle methods", Comput. Mech., 20, 295-309. https://doi.org/10.1007/s004660050252
- Oberai, A.A. and Pinsky, P.M. (1998), "A multiscale finite element method for the Helmholtz equation", Comput. Meth. Appl. Mech. Eng., 154(3-4), 281-297. https://doi.org/10.1016/S0045-7825(97)00130-8
- Oberai, A.A. and Pinsky, P.M. (2000), "A residual-based finite element method for the Helmholtz equation", Int. J. Numer. Meth. Eng., 49(3), 399-419. https://doi.org/10.1002/1097-0207(20000930)49:3<399::AID-NME844>3.0.CO;2-5
- Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using generalized meshfree approximation", Finite Elem. Anal. Des., 47(7), 683-697. https://doi.org/10.1016/j.finel.2011.02.001
- Suleau, S. and Bouillard, P. (2000), "One-dimensional dispersion analysis for the element-free Galerkin method for the Helmholtz equation", Int. J. Numer. Meth. Eng., 47(6), 1169-1188. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1169::AID-NME824>3.0.CO;2-9
- Uras, R.A., Chang, C.T., Chen, Y. and Liu, W.K. (1997), "Multi-resolution reproducing kernel particle methods in Acoustics", J. Comput. Acoust., 5, 71-94. https://doi.org/10.1142/S0218396X9700006X
- Voth, T.E. and Christon, M.A. (2001), "Discretization errors associated with reproducing kernel methods: one-dimensional domains", Comput. Meth. Appl. Mech. Eng., 190(18-19), 2429-2446. https://doi.org/10.1016/S0045-7825(00)00245-0
- Wenterodt, C. and von Estorff, O. (2009), "Dispersion analysis of the meshfree radial point interpolation method for the Helmholtz equation", Int. J. Numer. Meth. Eng., 77(12), 1670-1689. https://doi.org/10.1002/nme.2463
- Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2(2), 129-151. https://doi.org/10.12989/imm.2009.2.2.129
- Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized approximation for the meshfree analysis of solids", Int. J. Numer. Meth. Eng., 85(6), 693-722. https://doi.org/10.1002/nme.2991
- Wu, C.T. and Hu, W. (2011), "Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Meth. Appl. Mech. Eng., 200(45-46), 2991-3010. https://doi.org/10.1016/j.cma.2011.06.013
- Wu, C.T., Hu, W. and Chen, J.S. (2012), "A meshfree-enriched finite element method for compressible and near-incompressible elasticity", Int. J. Numer. Meth. Eng., 90(7), 882-914. https://doi.org/10.1002/nme.3349
- Wu, C.T. and Koishi, M. (2012), "Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites", Int. J. Numer. Meth. Eng., 91(11), 1137-1157. https://doi.org/10.1002/nme.4306
- Wu, C.T., Guo, Y. and Askari, E. (2013), "Numerical modeling of composite solids using an immersed meshfree Galerkin method", Composit. B, 45(1), 1397-1413. https://doi.org/10.1016/j.compositesb.2012.09.061
- Yao, L.Y., Yu, D.J., Cui, X.Y. and Zang, X.G. (2010), "Numerical treatment of acoustic problems with the smoothed finite element method", Appl. Acoust., 71(8), 743-753. https://doi.org/10.1016/j.apacoust.2010.03.006
- You, Y., Chen, J.S. and Voth, T.E. (2002), "Characteristics of semi- and full discretization of stabilized Galerkin meshfree method", Finite Elem. Anal. Des., 38(10), 999-1012. https://doi.org/10.1016/S0168-874X(02)00090-2
Cited by
- Localized particle boundary condition enforcements for the state-based peridynamics vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.001
- A Smoothed Particle Galerkin Formulation for Extreme Material Flow Analysis in Bulk Forming Applications vol.13, pp.03, 2016, https://doi.org/10.1142/S0219876216500195
- Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity vol.100, pp.5, 2014, https://doi.org/10.1002/nme.4751
- A Robust Numerical Procedure for the Thermomechanical Flow Simulation of Friction Stir Welding Process Using an Adaptive Element-Free Galerkin Method vol.2015, 2015, https://doi.org/10.1155/2015/486346
- Kinematic constraints in the state-based peridynamics with mixed local/nonlocal gradient approximations vol.54, pp.5, 2014, https://doi.org/10.1007/s00466-014-1055-8
- A reproducing kernel smooth contact formulation for metal forming simulations vol.54, pp.1, 2014, https://doi.org/10.1007/s00466-014-1015-3
- Localized particle boundary condition enforcements for the state-based peridynamics vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.525
- A parametric convex meshfree formulation for approximating the Helmholtz solution in circular coaxial waveguide vol.28, pp.5, 2015, https://doi.org/10.1002/jnm.2034