DOI QR코드

DOI QR Code

인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks

  • 정홍규 (숭실대학교 대학원 정보통신공학과) ;
  • 김광열 (숭실대학교 대학원 정보통신공학과) ;
  • 신요안 (숭실대학교 정보통신전자공학부)
  • 투고 : 2013.07.24
  • 심사 : 2013.09.10
  • 발행 : 2013.09.30

초록

본 논문에서는 분산된 광대역 인지 무선 네트워크 환경에서 상관관계를 갖는 다중 신호를 위한 협력 압축 스펙트럼 센싱 기법을 제안한다. 압축 센싱 (Compressed Sensing)은 나이퀴스트율 (Nyquist Rate) 이하로 샘플링된 신호를 높은 확률로 복구할 수 있는 신호처리 기법으로 기존의 광대역 스펙트럼 센싱을 위해서 필요로 했던 고속의 아날로그-디지털 변환기 구현 문제를 해결할 수 있다. 압축 센싱에서는 압축된 신호를 원본 신호로 정확하게 복구하는 복구 알고리즘을 설계하는 것이 하나의 핵심 문제이다. 본 논문에서는 나이퀴스트율 이하로 압축된 신호의 복구 성능을 높이기 위하여 연속된 다중 입력 신호로 구성된 Multiple Measurement Vector 모델을 이용하였고, 입력 신호 사이의 시간적 상관관계를 이용하는 협력 베이지안 복구 알고리즘을 제안한다.

In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.

키워드

참고문헌

  1. FCC, Spectrum policy task force report, FCC Document ET Docket No. 02-135, Nov. 2002.
  2. FCC, Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies: Notice of proposed rule making and order, FCC Document ET Docket No. 03-108, Dec. 2003.
  3. E. J. Candes and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006. https://doi.org/10.1109/TIT.2006.885507
  4. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  5. E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005. https://doi.org/10.1109/TIT.2005.858979
  6. Z. Tian and G. B. Giannakis, "Compressed sensing for wideband cognitive radios," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2007), pp. 1357-1360, Honolulu, U.S.A., Apr. 2007.
  7. Z. Zhang, Z. Han, H. Li, D. Yang, and C. Pei, "Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks," IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 3020-3031, Sep. 2011. https://doi.org/10.1109/TWC.2011.071411.101929
  8. Y. Lu, W. Guo, X. Wang, and W. Wang, "Distributed streaming compressive spectrum sensing for wide-band cognitive radio networks," in Proc. IEEE Veh. Technol. Conf. (VTC 2011-Spring), pp. 1-5, Budapest, Hungary, May 2011.
  9. Z. Fanzi, C. Li, and Z. Tian, "Distributed compressive spectrum sensing in cooperative multihop wideband cognitive networks," IEEE J. Sel. Topics Signal Process., vol. 5, no. 1, pp. 37-48, Feb. 2011. https://doi.org/10.1109/JSTSP.2010.2055037
  10. S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477-2488, July 2005. https://doi.org/10.1109/TSP.2005.849172
  11. Z. Zhang and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning," IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 912-926, Sep. 2011. https://doi.org/10.1109/JSTSP.2011.2159773
  12. J. Ziniel and P. Schniter, "Efficient high-dimensional inference in the multiple measurement vector problem," IEEE Trans. Signal Process., vol. 61, no. 2, pp. 340-354, Jan. 2013. https://doi.org/10.1109/TSP.2012.2222382
  13. Z. Zhang, J. Tzyy-Ping, S. Makeig, and B. D. Rao, "Compressed sensing of EEG for wireless telemonitoring With low energy consumption and inexpensive hardware," IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 221-224, Jan. 2013. https://doi.org/10.1109/TBME.2012.2217959
  14. E. J. Candes, T. Tao, and J. Romberg, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  15. S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, "Uniform uncertainty principle for Bernoulli and subgaussian ensembles," Constructive Approximation, vol. 28 no. 3, pp. 277-289, Aug. 2008. https://doi.org/10.1007/s00365-007-9005-8
  16. M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learning Research, vol. 1, pp. 211-244, Sep. 2001.
  17. S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, June 2008. https://doi.org/10.1109/TSP.2007.914345
  18. S. Babacan, R. Molina, and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., vol. 19, no. 1, pp. 53-63, Jan. 2010. https://doi.org/10.1109/TIP.2009.2032894
  19. G. C. Cawley and N. L. C. Talbot, "Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters," J. Mach. Learning Research, vol. 8, pp. 841-861, May 2007.
  20. I. Guyon, A. Saffari, G. Dror, and G. Cawley, "Model selection: Beyond the Bayesian/frequentist divide," J. Mach. Learning Research, vol. 11, pp. 61-87, Mar. 2010.