DOI QR코드

DOI QR Code

특정한 유한체 Fq상에서의 제곱근 알고리즘

Square Root Algorithm in Fq for Special Class of Finite Fields

  • 투고 : 2012.12.26
  • 심사 : 2013.08.13
  • 발행 : 2013.09.30

초록

$q{\equiv}5$ (mod 8)의 경우에 유한체 $F_q$상에서 Atkin의 제곱근 알고리즘과 $q{\equiv}9$ (mod 16)의 경우에 Kong의 알고리즘으로부터 일반적인 제곱근 알고리즘을 제안한다. 우리의 알고리즘은 s가 $2^s|q-1$을 만족하는 가장 큰 양의 정수라 할 때, $2^s$차 원시근 ${\xi}$를 미리 계산하였고 s의 값이 작을 때 적용가능하다. 제시한 알고리즘은 제곱근을 계산하기 위해 한 번의 지수계산이 필요하고, Akin, M$\ddot{u}$ller, Kong의 알고리즘과 비교해보아도 유리하다.

We present a square root algorithm in $F_q$ which generalizes Atkin's square root algorithm [9] for finite field $F_q$ of q elements where $q{\equiv}5$ (mod 8) and Kong et al.'s algorithm [11] for the case $q{\equiv}9$ (mod 16). Our algorithm precomputes ${\xi}$ a primitive $2^s$-th root of unity where s is the largest positive integer satisfying $2^s|q-1$, and is applicable for the cases when s is small. The proposed algorithm requires one exponentiation for square root computation and is favorably compared with the algorithms of Atkin, M$\ddot{u}$ller and Kong et al.

키워드

참고문헌

  1. NIST, Digital Signature Standard, Federal Information Processing Standard 186-3, 2000, http://csrc.nist.gov/publications/fips/.
  2. D. Shanks, "Five number-theoretic algorithms," in Proc. Second Manitoba Conf. Numerical Math., pp. 51-70, Winnipeg, Canada, Oct. 1972.
  3. A. Tonelli, "Bemerkung uber die Auflosung Quadratisher Congruenzen," Gottinger Nachrichten, pp. 344-346, 1891.
  4. M. Cipolla, "Un metodo per la risoluzione della congruenza di secondo grado," Rendiconto dell'Accademia Scienze Fisiche e Matematiche, vol. 9, no. 3, pp. 154-163, 1903.
  5. D. H. Lehmer, "Computer technology applied to the theory of numbers," Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), pp. 117-151, 1969.
  6. S. Lindhurst, "An analysis of Shanks's algorithm for computing square roots in finite fields," CRM Proc. Lecture Notes, vol. 19, pp. 231-242, 1999.
  7. D. G. Han, D. Choi, and H. Kim, "Improved computation of square roots in specific finite fields," IEEE Trans. Comput., vol. 58, no. 2, pp. 188-196, Feb. 2009. https://doi.org/10.1109/TC.2008.201
  8. D.-G. Han, D. H. Choi, H. Kim, and J. Lim, "Efficient computation of square roots in finite fields $F_{{p}^{k}}$," J. Korea Inst. Inform. Security Cryptology (KIISC), vol. 18, no. 6A, pp. 3-15, Dec. 2008.
  9. A. O. L. Atkin, "Probabilistic primality testing," summary by F. Morain, Inria Research Report 1779, pp. 159-163, 1992.
  10. S. Muller, "On the computation of square roots in finite fields," Designs, Codes and Cryptography, vol. 31, no. 3, pp. 301-312, Mar. 2004. https://doi.org/10.1023/B:DESI.0000015890.44831.e2
  11. F. Kong, Z. Cai, J. Yu, and D. Li, "Improved generalized Atkin algorithm for computing square roots in finite fields," Inform. Process. Lett., vol. 98, no. 1, pp. 1-5, Apr. 2006. https://doi.org/10.1016/j.ipl.2005.11.015