DOI QR코드

DOI QR Code

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil (Powertrain CAE Team, Research & Development Division) ;
  • Washington, Gregory N. (The Henry Samueli School of Engineering, University of California) ;
  • Yoon, Hwan-Sik (Department of Mechanical Engineering, The University of Alabama)
  • Received : 2012.01.03
  • Accepted : 2012.12.01
  • Published : 2013.06.25

Abstract

This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.

Keywords

References

  1. Beck, B.S., Cunefare, K.A., Ruzzene, M. and Collet, M. (2011), "Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array", J. Intell. Mater. Syst. Struct., 22(11), 1177-1187. https://doi.org/10.1177/1045389X11411119
  2. Bianchini, E. (2008), "Active vibration control of automotive like panels", Proceedings of the 2008 SAE BRASIL Noise and Vibration Conference, SAE 2008-36-0576, Florianopolis, March.
  3. Bjorck, A. (1996), Numerical methods for least squares problems, SIAM, Philadelphia, PA.
  4. Cheng, T.H. and Oh, I.K. (2009), "Coil-based electromagnetic damper and actuator for vibration suppression of cantilever beams", J. Intell. Mater. Syst. Struct., 20(18), 2237-2247. https://doi.org/10.1177/1045389X09352819
  5. Fanson, J.L. and Caughey, T.K. (1990), "Positive position feedback control for large space structures", AIAA J., 28, 717-724. https://doi.org/10.2514/3.10451
  6. Ji, H., Qiu, J., Badel, A. and Zhu, K. (2009), "Semi-active vibration control of a composite beam using an adaptive SSDV approach", J. Intell. Mater. Syst. Struct., 20(4), 401-412. https://doi.org/10.1177/1045389X08095182
  7. Kashani, R., Mazdeh, A. and Orzechowski, J. (2001), "Shunt piezo damping of a radiating panel", Proceedings of the 2001 Noise and Vibration Conference, SAE 2001-01-1576, Traverse City, May.
  8. Kollar, I. (1993), "On frequency-domain identification of linear systems", IEEE T. Instrum. Meas., 42, 2-6. https://doi.org/10.1109/19.206670
  9. Lara-Prieto, V., Parkin, R., Jackson, M., Silberschmidt, V. and Kesy, Z. (2010), "Vibration characteristics of MR cantilever sandwich beams: experimental study", Smart Mater. Struct., 19(1), 015005. https://doi.org/10.1088/0964-1726/19/1/015005
  10. Li, K., Li, S. and Zhao, D. (2012), "Identification and suppression of vibrational energy in stiffened plates with cutouts based on visualization techniques", Struct.Eng. Mech., 43(3).
  11. Lim, Y.Y. and Soh, C.K. (2011), "Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique", Smart Mater. Struct., 20(12), 125001. https://doi.org/10.1088/0964-1726/20/12/125001
  12. Mahmoodi, S.N. and Ahmadian, M. (2010), "Modified acceleration feedback for active vibration control of aerospace structures", Smart Mater. Struct., 19(6), 065015. https://doi.org/10.1088/0964-1726/19/6/065015
  13. Mahmoodi, S.N., Ahmadian, M. and Inman, D.J. (2010), "Adaptive modified positive position feedback for active vibration control of structures", J. Intell. Mater. Syst. Struct., 21(6), 571-580. https://doi.org/10.1177/1045389X10361631
  14. Makihara, K. (2012), "Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control", Smart Struct. Syst., 10(3), 193-207. https://doi.org/10.12989/sss.2012.10.3.193
  15. Marquardt, D. (1963), "An algorithm for least-squares estimation of nonlinear parameters", SIAM J. Appl. Math., 11, 431-441. https://doi.org/10.1137/0111030
  16. Mirzaee, E., Eghtesad, M. and Fazelzadeh, S.A. (2011), "Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design", Smart Struct. Syst., 7(2), 103-116. https://doi.org/10.12989/sss.2011.7.2.103
  17. Neelakantan, V.A. (2005), Modeling, design, testing and control of a two-stage actuation mechanism using piezoelectric actuators for automotive applications, PhD Dissertation, Mechanical Engineering Department, The Ohio State University, Columbus, Ohio
  18. Neelakantan, V. and Washington, G.N. (2008), "Model predictive control of a two stage actuation system using piezoelectric actuators for controllable industrial and automotive brakes and clutches", J. Intell. Mater. Syst. Struct., 19, 845-857. https://doi.org/10.1177/1045389X07082024
  19. Nguyen, P.B. and Choi, S.B. (2010), "Open-loop position tracking control of a piezoceramic flexible beam using a dynamic hysteresis compensator", Smart Mater. Struct., 19(12), 125008. https://doi.org/10.1088/0964-1726/19/12/125008
  20. Preumont, A., Loix, N., Malaise, D. and Lecrenier, O. (1993), "Active damping of optical test benches with acceleration feedback", Machine Vib., 2, 119-124.
  21. Rajamohan, V., Sedaghati, R. and Rakheja, S. (2011), "Optimal vibration control of beams with total and partial MR-fluid treatments", Smart Mater. Struct., 20(11), 115016. https://doi.org/10.1088/0964-1726/20/11/115016
  22. Raju, B.B., Bianchini, E., Arata, J. and Roylance, M. (2005), "Improved performance of a baffle-less automotive muffler using piezoelectric materials", Proceedings of the SAE 2005 Noise and Vibration Conference and Exhibition, SAE 2005-01-2353, Traverse City, May.
  23. Rao, A.K., Natesan, K., Bhat, S.M. and Ganguli, R. (2008), "Experimental demonstration of H-inf control based active vibration suppression in composite fin-tip of aircraft using optimally placed piezoelectric patch actuators", J. Intell.Mater. Syst. Struct.,19(6), 651-669. https://doi.org/10.1177/1045389X07078964
  24. Rossiter, J.A. (2003), Model-Based Predictive Control: A Practical Approach, CRC Press, London, UK.
  25. Sethi, V. and Song, G. (2008), "Multimodal vibration control of a flexible structure using piezoceramic sensor and actuator", J. Intell. Mater. Syst. Struct., 19(5), 573-582. https://doi.org/10.1177/1045389X07077853
  26. Shevtsov, S., Soloviev, A., Acopyan, V. and Samochenko, I. (2009), "Helicopter rotor blade vibration control on the basis of active/passive piezoelectric damping approach", Proceedings of the PHYSCON 2009, Catania, September.
  27. Song, Z.G. and Li, F.M. (2011), "Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs", Smart Mater. Struct., 20(5), 055013. https://doi.org/10.1088/0964-1726/20/5/055013
  28. Suhariyono, A., Goo, N.S. and Park, H.C. (2008), "Use of lightweight piezo-composite actuators to suppress the free vibration of an aluminum beam", J. Intell. Mater. Syst. Struct., 19(1), 101-112. https://doi.org/10.1177/1045389X07073645
  29. Sun, H., Yang, Z., Li, K., Li, B., Xie, J., Wu, D. and Zhang, L. (2009), "Vibration suppression of a hard disk driver actuator arm using piezoelectric shunt damping with a topology-optimized PZT transducer", Smart Mater. Struct., 18(6), 065010. https://doi.org/10.1088/0964-1726/18/6/065010
  30. Suzuki, Y. and Kagawa, Y. (2010), "Active vibration control of a flexible cantilever beam using shape memory alloy actuators", Smart Mater. Struct., 19(8), 085014. https://doi.org/10.1088/0964-1726/19/8/085014
  31. Trindade, M.A. and Maio, C.E.B. (2008), "Multimodal passive vibration control of sandwich beams with shunted shear piezoelectric materials", Smart Mater. Struct., 17(5), 055015. https://doi.org/10.1088/0964-1726/17/5/055015
  32. Utkin, V., Guldner, J. and Shi, J. (1999), Sliding Mode Control in Electromechanical Systems, Taylor & Francis, Philadelphia, PA.
  33. Wolff, K., Lahey, H.P., Nussmann, C., Nehl, J., Wimmel, R., Siebald, H., Fehren, H., Redaelli, M. and Naake, A. (2007), "Active noise cancellation at powertrain oil pan", Proceedings of the SAE 2007 Noise and Vibration Conference and Exhibition, SAE 2007-01-2422, St. Charles, May.
  34. Wu, N. and Wang, Q. (2010), "Repair of vibrating delaminated beam structures using piezoelectric patches", Smart Mater. Struct., 19(3), 035027. https://doi.org/10.1088/0964-1726/19/3/035027
  35. Xie, S.L., Zhang, X.N., Zhang, J.H. and Yu, L. (2004), "H-inf robust vibration control of a thin plate covered with a controllable constrained damping layer", J. Vib. Control, 10, 115-134.
  36. Yoon, H.S. and Washington, G. (2008), "Active vibration confinement of flexible structures using piezoceramic patch actuators", J. Intell. Mater. Syst. Struct., 19(2), 145-155. https://doi.org/10.1177/1045389X06073835
  37. Young, K.D., Utkin, V.I. and Ozguner, U. (1999), "A control engineer's guide to sliding mode control", IEEE T. Contr. Syst. T., 7, 328-342. https://doi.org/10.1109/87.761053

Cited by

  1. Active vibration control: considering effect of electric field on coefficients of PZT patches vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1091
  2. An efficient FE approach for attenuation of acoustic radiation of thin structures by using passive shunted piezoelectric systems vol.128, 2017, https://doi.org/10.1016/j.apacoust.2017.04.013
  3. Nonlinear control of structure using neuro-predictive algorithm vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1133
  4. Adaptive fuzzy sliding mode control of seismically excited structures vol.19, pp.5, 2013, https://doi.org/10.12989/sss.2017.19.5.577
  5. Reduced order finite element formulations for vibration reduction using piezoelectric shunt damping vol.147, pp.None, 2013, https://doi.org/10.1016/j.apacoust.2018.04.016
  6. Vibration reduction against modulated excitation using multichannel NLMS algorithm for a structure with three active paths between plates vol.33, pp.10, 2013, https://doi.org/10.1007/s12206-019-0910-0
  7. Active disturbance rejection vibration control for an all-clamped piezoelectric plate with delay vol.108, pp.None, 2013, https://doi.org/10.1016/j.conengprac.2020.104719