DOI QR코드

DOI QR Code

Evaluation of Genetic Structure of Amaranth Accessions from the United States

  • He, Qiang (Department of Plant Resources, College of Industrial Sciences, Kongju National University) ;
  • Park, Yong-Jin (Department of Plant Resources, College of Industrial Sciences, Kongju National University)
  • Received : 2013.09.10
  • Accepted : 2013.09.13
  • Published : 2013.09.30

Abstract

Amaranths (Amaranthus sp.), an endemic American crop, are now grown widely across the world. This study used 14 simple sequence repeat (SSR) markers to analyze the genetic diversity of 74 amaranth accessions from the United States, with eight accessions from Australia as controls. One hundred twenty-two alleles, averaging eight alleles per locus, were observed. The average major allele frequency, expected heterozygosity, and polymorphism information content (PIC) were 0.44, 0.69, and 0.65, respectively. The structure analysis based on genetic distance classified 77 accessions (94%) into three clusters, while five accessions (6%) were admixtures. Among the three clusters, Cluster 3 had the highest allele number and PIC values, while Cluster 2 had the lowest. The lowest FST was between Clusters 1 and 3, indicating that these two clusters have higher gene flow between them compared to the others. This finding was reasonable because Cluster 2 included most of the Australian accessions. These results indicated satisfactory genetic diversity among U.S. amaranths. These findings can be used to design effective breeding programs involving different plant characteristics.

Keywords

References

  1. Bao, J.S., Corke, H. and Sun, M. 2006. Analysis of genetic diversity and relationship in waxy rice (Oryza sativa L.) using AFLP and ISSR marker. Genet. Resour. Crop Ev. 53: 323-330. https://doi.org/10.1007/s10722-004-6145-6
  2. Chan, K.F. and Sun, M.1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95:865-873 https://doi.org/10.1007/s001220050637
  3. Cheng, Y., Kim, C.H., Shin, D.I., Kim, S.M., et al. 2011. Development of simple sequence repeat (SSR) markers to study diversity in the herbaceous peony (Paeonia lactiflora). J. Med. Plants Res. 5: 6744-6751.
  4. Chung, J.W. and Park, Y.J. 2010. Population structure analysis reveals the maintenance of isolated sub-populations of weedy rice. Weed Res. 50(6): 606-620. https://doi.org/10.1111/j.1365-3180.2010.00810.x
  5. Costea, M., Weaver, S.E. and Tardif, F.J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 84(2): 631-668 https://doi.org/10.4141/P02-183
  6. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14(8): 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  7. Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. 1: p.47.
  8. Feltus, F.A., Wan, J., Schulze, S.R., Estill, J.C., et al. 2004. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 14(9): 812-1819. https://doi.org/10.1101/gr.2228504
  9. Jin, L., Lu, Y., Xiao, P., Sun, M., Corke, H., et al. 2010. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet. 121(3):475-487. https://doi.org/10.1007/s00122-010-1324-7
  10. Khaing, A.A., Moe, K.T., Chung, J.W., Baek, H.J., et al. 2013. Genetic diversity and population structure of the selected core set in Amaranthus using SSR markers. Plant Breeding. 132(2): 165-173. https://doi.org/10.1111/pbr.12027
  11. Lee, J.R., Hong, G.Y., Dixit, A., Chung, J.W., et al. 2008. Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplification in wild species. Conserv. Genet. 9(1):243-246. https://doi.org/10.1007/s10592-007-9323-1
  12. Li, G., Kwon, S.W. and Park, Y.J. 2012. Updates and perspectives on the utilization of molecular makers of complex traits in rice. Genet. Mol. Res. 11(4):4157-4168. https://doi.org/10.4238/2012.September.10.4
  13. Liang, C.Z., Gu, M.H., Pan, X.B., Liang, G.H., et al. 1994. RFLP tagging of a new semidwarfing gene in rice. Theor. Appl. Genet. 88(6):898-900. https://doi.org/10.1007/BF01254003
  14. Liu, K. and Muse, S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  15. Mujica, A. and Jacobsen, S.E. 2003. The genetic resources of Andean grain amaranths (Amaranthus caudatus L., A. cruentus L. and A. hypochondriacus L.) in America. Plant Genet. Resour. Newsl. 133:41-44.
  16. Nagaraju, J., Kathirvel, M., Kumar, R.R., Siddiq, E. and Hasnain, S.E. 2002. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. P. Natl. Acad. Sci. USA. 99(9):5836-5841. https://doi.org/10.1073/pnas.042099099
  17. Ostrowski, M.F., David J., Santoni, S., Mckhann, H., et al. 2006. Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol. Ecol. 15(6):1507-1517. https://doi.org/10.1111/j.1365-294X.2006.02865.x
  18. Pritchard, J.K., Stephens, M. and Falush, D. 2000. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 155(2):945- 959.
  19. Ray, T. and Roy, S.C. 2009. Genetic diversity of Amaranthus species from the Indo-Gangetic Plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J Hered. 100 (3):338-347. https://doi.org/10.1093/jhered/esn102
  20. Sauer, J.D. 1967. The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann. Missouri. Bot. Gard. 54(2):103-137. https://doi.org/10.2307/2394998
  21. Schneider, S. and Excoffier, L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among Sites: Application to human mitochondrial DNA. Genetics 152(3):1079-1089.
  22. Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR products. Nat. Biotechnol. 18(2):233-234. https://doi.org/10.1038/72708
  23. Tam, S.M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S.R., et al. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposonbased SSAP, AFLP and SSR. Theor. Appl. Genet. 110(5): 819- 831. https://doi.org/10.1007/s00122-004-1837-z
  24. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007.MEGA4: Molecular evolutionary genetics analysis (MEGA) software version4.0. Mol. Biol. Evol. 24(8):1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Wassom, J.J. and Tranel, P.J. 2005. Amplified fragment length polymorphism based genetic relationships among weedy amaranthus species. J. Hered. 96(4):410-416. https://doi.org/10.1093/jhered/esi065
  26. Wetzel, D., Michael, K., Horak, J. and Skinner, D.J. 1999. Use of PCR-based molecular markers to identify weedy amaranthus species. Weed Science. 7:518-523.
  27. Wolfe, M. S. 1985. The Current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23(1): 251-273. https://doi.org/10.1146/annurev.py.23.090185.001343
  28. Xu, F. and Sun, M. 2001. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol. Phylogenet. Evol. 21(3):372-387. https://doi.org/10.1006/mpev.2001.1016
  29. Zhao, W., Chung, J.W., Ma, K.H., Kim, T.S., et al. 2009. Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Genes Genom. 31(4): 283-292. https://doi.org/10.1007/BF03191201

Cited by

  1. Morphological Assessment of Cultivated and Wild Amaranth Species Diversity vol.8, pp.11, 2018, https://doi.org/10.3390/agronomy8110272