References
- Aczel, A. D. and Sounderpandian, J. (2005), Complete Business Statistics (6th ed.), McGraw-Hill, Boston, MA.
- Beynon, M. (2002), DS/AHP method: a mathematical analysis, including an understanding of uncertainty, European Journal of Operational Research, 140(1), 148-164. https://doi.org/10.1016/S0377-2217(01)00230-2
- Cheng, H. A. (2010), Knowledgescapes: a probabilistic model for mining tacit knowledge for information retrieval, cited 2013 Aug 30, Available from: http://www.cs.berkeley.edu/-jfc/papers/01/heyning/ms_knowledgescapes.pdf.
- Dennis, C. and Hiroshi, T. (2011), Preliminary experimentation about interactive spiral knowledge mining based on conjoint analysis, Proceedings of the 13th International Conference on Information Integration and Webbased Applications and Services, Ho Chi Minh City, Vietnam, 531-534.
- Durbach, I. N. and Stewart, T. J. (2012), Modeling uncertainty in multi-criteria decision analysis, European Journal of Operational Research, 223(1), 1-14. https://doi.org/10.1016/j.ejor.2012.04.038
- Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M. (2011), Developing constraint-based recommenders. In: Ricci, F., et al. (eds.), Recommender Systems Handbook, Springer, New York, NY, 187-215.
- Felfernig, A., Mandl, M., and Schubert, M. (2008), Intelligent debugging of utility constraints in configuration knowledge bases. In: Informatik 2010: Service Science - Neue Perspektiven für die Informatik, Beitrage der 40. Jahrestagung der Gesellschaft fur Informatik e.V. (GI), Gesellschaft fur Informatik, Bonn, Germany, 767-772.
- Gentleman, R. and Ihaka, R. (2012), The R project for statistical computing, cited 2013 Aug 30, Available from: www.r-project.org.
- Iyengar, R. and Jedidi, K. (2012), A conjoint model of quantity discounts, Marketing Science, 31(2), 334-350. https://doi.org/10.1287/mksc.1110.0702
- Orme, B. K. (2010), Getting Started with Conjoint Analysis (2nd ed.), Research Publishers, Madison, WI.
- Sheng, Z. and Furukawa, K. (2009), Interactive decision support web tool based on conjoint analysis. In: Takeyasu, K. and Tsuji, H. (eds.), Management Information System and Its Application, Osaka Municipal Universities Press, Osaka, Japan, 38-58.
- Sheng, Z., Nakano, M., Kubo, S., and Tsuji, H. (2008), Risk bias externalization for offshore software outsourcing by conjoint analysis. In: Satoh, K. et al. (eds.), New Frontiers in Artificial Intelligence: JSAI 2007 Conference and Workshops, Springer, Heidelberg, Germany, 255-268.
- Snedecor, G. W. and Cochran, W. G. (1989), The comparison of two samples. In: Snedecor, G. W. and Cochran, W. G. (eds.), Statistical Methods (8th ed.), Iowa State University Press, Ames, IA, 83-106.
- Tiwana, A. and Bush, A. (2007), A comparison of transaction cost, agency, and knowledge-based predictors of IT outsourcing decisions: A U.S.-Japan Cross-Cultural Field Study, Journal of Management Information Systems, 24(1), 259-300. https://doi.org/10.2753/MIS0742-1222240108
- Tsuji, H., Sakurai, A., Yoshida, K., Tiwana, A., and Bush, A. (2007), Questionnaire-based risk assessment scheme for Japanese offshore software outsourcing. In: Meyer, B. and Joseph, M. (eds.), Software Engineering Approaches for Offshore and Outsourced Development, Sprinter, Heidelberg, Germany, 114-127.
- Wierenga, B. (2010), Handbook of Marketing Decision Models, Springer, New York, NY.
Cited by
- Design of interactive conjoint analysis Web-based system vol.11, pp.1, 2015, https://doi.org/10.1108/IJWIS-04-2014-0011