DOI QR코드

DOI QR Code

금산장기생태조사지 낙엽활엽수림내 토양이산화탄소 방출량의 연변동

Annual Variation of Soil CO2 Efflux in a Broadleaved Deciduous Forest of the Geumsan (Mt.) Long-Term Ecological Research Site

  • 투고 : 2013.08.27
  • 심사 : 2013.09.24
  • 발행 : 2013.09.30

초록

산림생태계 토양 호흡량은 지구탄소순환에 중요한 역할을 한다. 본 연구는 금산 장기생태 연구 조사지 낙엽활엽수림을 대상으로 4년 동안 토양 이산화탄소 방출량의 연 변동을 조사하였다. 금산 장기생태 연구 조사지 월별 토양 이산화탄소 방출량은 토양온도 변화와 밀접한 관계가 있었으며 토양수분함량과는 뚜렷한 경향을 보이지 않았다(P > 0.05). 동절기(1월과 2월, 2007년의 경우 1월부터 3월)를 제외한 평균 토양 이산화탄소 방출량은 2008년 0.32 g $CO_2\;m^{-2}h^{-1}$, 2009년 0.40g $CO_2\;m^{-2}h^{-1}$, 2007년 0.41g $CO_2\;m^{-2}h^{-1}$, 2010년 0.54 g $CO_2\;m^{-2}h^{-1}$ 순이었으며, 2008년의 연 평균토양온도는 $12.0^{\circ}C$로 다른 연도의 토양 온도 $13.0-13.5^{\circ}C$에 비해 유의적으로(P<0.05) 낮았다. 토양 이산화탄소 방출량과 토양 20cm 깊이의 토양온도는 지수함수 관계가 있었으며 ($R^2$ = 0.31-0.75, P < 0.05), 토양수분함량은 토양 이산화탄소 방출량과 유의적인 관계가 없었다(P > 0.05). 본 연구 결과에 따르면 금산장기생태연구 조사지 토양 이산화탄소 방출량의 연 변동은 토양수분보다는 토양온도 변화와 관계가 있었다.

Soil respiration in forest ecosystems play an important role in global carbon cycle. This study was carried out to determine the annual variation of soil $CO_2$ efflux for 4 years in a broadleaved deciduous forest of the Geumsan (Mt.) Long-Term Ecological Research (GLTER) site in Southern Korea. The soil $CO_2$ efflux in the GLTER site showed annual variations with the fluctuations of annual mean soil temperature, but not with those of soil water content. The annual mean soil $CO_2$ efflux except for winter season was 0.32 g $CO_2\;m^{-2}h^{-1}$ for 2008, 0.40 g $CO_2\;m^{-2}h^{-1}$ for 2009, 0.41 g $CO_2\;m^{-2}h^{-1}$ for 2007, and 0.54 g $CO_2\;m^{-2}h^{-1}$ for 2010. The lowest soil $CO_2$ effluxin 2008 was associated with the lowest soil temperature ($2.0^{\circ}C$) in comparison with those of other years ($13.0-13.5^{\circ}C$). The exponential relationships between monthly soil $CO_2$ efflux and the corresponding soil temperature at the soil depth of 20 cm were significant ($R^2$ = 0.31-0.75, P < 0.05). The results indicate that the annual variation of soil $CO_2$ efflux was attributed to the variations of soil temperature rather than soil water content in the GLTER site.

키워드

참고문헌

  1. Borken, W., Y. J. Xu, E. A. Davidson, and F. Beese, 2002: Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology 8(12), 1205-1216. doi: 10.1046/j.1365-2486.2002.00547
  2. Bowden, R. D., E. Davidson, K. Savage, C. Arabia, and P. Steudler, 2004: Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management 196(1), 43-56. https://doi.org/10.1016/j.foreco.2004.03.011
  3. Davidson, E. A., E. Belk, and R. D. Boone, 1998: Soil water content and temperature as independent or confounded factors controlling soil respiration in temperate mixed hardwood forest. Global Change Biology 4(2), 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  4. Davidson, E. A., and I. A. Janssens, 2006: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173. doi:10.1038/nature04514
  5. Haynes, B. E., and S. T. Gower, 1995: Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology 15(5), 317-325. https://doi.org/10.1093/treephys/15.5.317
  6. Kim, C., 2008: Soil carbon storage, litterfall and $CO_2$ efflux in fertilized and unfertilized larch (Larix leptolepis) plantations. Ecological Research 23(4), 757-763. doi: 10.1007/ s11284-007-0436-2
  7. Kim, C., Y. Son, W. K. Lee, J. Jeong, and N. J. Noh, 2009: Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257(5), 1420-1426. doi: 10.1016/j.foreco.2008.12.015
  8. Lee, K. H., and S. Jose, 2003: Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. 185(3), 263-273. https://doi.org/10.1016/S0378-1127(03)00164-6
  9. Lee, N. Y., J. W. Koo, N. J. Noh, J. Kim, and Y. Son, 2010: Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research 123(4), 485-495. doi: 10.1007/s10265-010-0316-7
  10. Noh, N. J., Y. Son, S. K. Lee, T. K. Yoon, K. W. Seo, C. Kim, W. K. Lee, S. W. Bae, and J. Hwang, 2010: Influence of stand density on soil $CO_2$ efflux for a Pinus densiflora forest in Korea. Journal of Plant Research 123(4), 411-419. doi: 10.1007/s10265-010-0331-8
  11. Phillips, R. P., and T. J. Fahey, 2007: Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytologist 176(3), 655-664. https://doi.org/10.1111/j.1469-8137.2007.02204.x
  12. Raich, J. W., and A. Tufekcioglu, 2000: Vegetation and soil respiration: Correlations and controls. Biogeochemistry 48, 71-90. https://doi.org/10.1023/A:1006112000616
  13. Samuelson, L., R. Mathew, T. Stoke, Y. Feng, D. Aubrey, and M. Coleman, 2009: Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. Forest Ecology and Management 258(11), 2431-2438. https://doi.org/10.1016/j.foreco.2009.08.020
  14. SAS Institute Inc., 2003. SAS/STAT Statistical Software. Version 9.1. North Carolina, Cary, USA.