DOI QR코드

DOI QR Code

보다 현실적인 차두시간 행태 구현을 위한 2차로 차량추종모형 개발

Development of Two-Lane Car-Following Model to Generate More Realistic Headway Behavior

  • 윤병조 (인천대학교 도시과학대학 도시환경공학부)
  • 투고 : 2012.09.17
  • 심사 : 2013.03.18
  • 발행 : 2013.09.30

초록

2차로 양방향 도로(이하 2차로 도로)의 주요한 특징은 화물차량 등의 저속차량으로 인하여 발생하는 차량군과 차량추월 행태이다. 차량추종과 차량추월모형이 결합된 2차로 도로 교통류 모형을 개발하기 위해서는 2차로 도로에 적합한 차량추종모형의 개발이 필수적이다. 2차로 도로에서 고속차량은 저속차량의 후미에서 차량추종을 수행함과 더불어 추월을 수행하게 되며, 이 과정에서 짧은 차간거리가 발생하게 된다. 또한 저속차량을 추종하는 차량은 대항교통류의 차두시간분포 내에서 적정 공간을 이용하여 차량추월을 결정하게 된다. 따라서 2차로 차량추종모형은 짧은 차간거리에서 차량주행과 더불어 차두시간분포를 설명해야 한다. 추가적으로 국내의 2차로 도로규모를 고려하면 대규모 도로망을 모의실험할 수 있는 모형이 필요한 실정이다. 국내의 경우, 2차로 차량추종모형에 대한 연구는 거의 보고되고 있지 않다. 본 연구에서는 대규모 가로망에 적용이 가능하면서 2차로 도로의 차량추종행태를 보다 현실적으로 구현할 수 있는 모형을 개발하였다. 개발된 모형의 실험적 평가 결과, 혼잡 교통류의 특성 중 하나인 가다서다(stop-and-go) 현상과 차두시간분포를 효과적으로 설명하는 것으로 나타났다. 따라서 본 연구에서 제시된 차량추종모형이 차량추월모형과 결합된 경우, 보다 현실적으로 2차로 도로 교통류를 설명할 수 있을 것으로 판단된다.

The key characteristics of two-lane-and-two-way traffic flow are platoon and overtaking caused by low-speed vehicle such as truck. In order to develop two-way traffic flow model comprised of CF(car-following) and overtaking model, it is essential to develop a car-following model which is suitable to two-way traffic flow. Short distance between vehicles is caused when a high-speed vehicle tailgates and overtakes foregoing low-speed vehicle on two-way road system. And a vehicle following low-speed vehicle decides to overtake the front low-speed vehicle using suitable space within the headway distribution of opposite traffic flow. For this reason, a two-way CF model should describes not only running within short gap but also headway distribution. Additionally considering domestic two-way-road size, there is a on-going need for large-network simulation, but there are few studies for two-way CF model. In this paper, a two-way CA model is developed, which explains two-way CF behavior more realistic and can be applied for large road network. The experimental results show that the developed model mimics stop-and-go phenomenon, one of features of congested traffic flow, and efficiently generates the distribution of headway. When the CF model is integrated with overtaking model, it is, therefore, expected that two-way traffic flow can be explained more realistically than before.

키워드

참고문헌

  1. ARRB (1985). Technical manual ATM 10A; A model for simulating traffic on two-lane rural roads: User guide and manual for TRARR version 3.0.
  2. Barlovic, R., Santen, L., Schadschneider, A. and Schreckenberg, M. (1997). "Meta-stable states in CA models for traffic flow." Traffic And Granular Flow 97, Springer, pp. 335-340.
  3. Beckman, R. J. et al. (1997). TRANSIMS Dallas/Fort Worth case study report, Los Alamos Unclassified Report LA-UR to be released, Los Alamos National Laboratory, TSA-Division, Los Alamos NM 87545, USA.
  4. Chang, H. and Lee, S. (2003). "A study on link travel time prediction by short term simulation based on CA." Journal of Korean Society of Transportation, Vol. 21, No. 1, pp. 91-102 (in Korean).
  5. Chang, H., Baek, S. and Park, J. (2004). "A study on stochastic wave propagation model to generate various uninterrupted traffic flows." Journal of Korean Society of Transportation, Vol. 22, No. 4, pp. 147-158 (in Korean).
  6. Chang, H., Baek, S., Namkoong, J. and Yoon, B. (2005). "Some findings of CA models to generate various freeway traffic flows with additional rules." Journal of EASTS, Vol. 6, pp. 1368-1381.
  7. Chang, H., Baek, S., Kim, H., Shah, A. A., Lee, J. D. and Mahalik, N. P. (2008). "Development of distributed real-time decision support system for traffic management centers using microscopic CA model." Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 31, No. B2, pp. 155-166.
  8. Cho, J., Kim, J., Kho, S. and Kim, C. (2001). "A traffic flow micro-simulation system using cellular automata." Journal of Korean Society of Transportation, Vol. 19, No. 3, pp. 133-144 (in Korean).
  9. Choen, S. and Rho, J. (2001). "Development of a traffic simulation model analyzing the effects of highway incidents using the CA(Cellular Automata) model." Journal of Korean Society of Transportation, Vol. 19, No. 6, pp. 219-227 (in Korean).
  10. Chopard, B., Dupuis, A. and Luthi, P. (1997). "A cellular automata model for urban traffic and its application to the city of geneva." Traffic And Granular Flow 97, Springer, pp. 153-168.
  11. Goldblatt, R. (1981). Review of existing two-lane, two-way rural road computer simulation models.
  12. May, A. D., Botha, J. L. and Bryant, R. S. (1980). A decisionmaking framework for evaluation of climbing lanes on two-lane, two-way rural roads, Institute of Transportation Studies, University of California, FHWA & CALTRANS.
  13. Nagel, K. and Schreckenberg, M. (1992). "A cellular automaton model for freeway traffic." Journal of Physics Issue 2, pp. 2221-2229.
  14. Nagel, K., Stretz, P., Pieck, M., Leckey, S., Donnelly, R. and Barrett, C. L. (1999). TRANSIMS traffic flow characteristics.
  15. Nagel, K. (1996). "Particle hopping models and traffic flow theory." Physical Review E, Copyright by The American Physical Society. Vol. 53, pp. 4655-4672.
  16. Rickert, M., Nagel, K., Schreckenberg, M. and Latour, A. (1996). "Two lane traffic simulations using cellular automata." Physica A 231, pp. 534-550. https://doi.org/10.1016/0378-4371(95)00442-4
  17. Schreckenberg, M. (2002). "Simulation of the autobahn traffic in north rhine-west phalia." International Symposium on Transport Simulation, pp. 193-200.
  18. Schadschneider, A. and Schreckenberg, M. (1997). "Traffic models with 'slow-to- start' rules." Ann. Physic 6, p. 541.
  19. Shah, A. A., Kim, H., Baek, S., Chang, H. and Ahn B. (2008). "System architecture of a decision support system for freeway incident management in Republic of Korea." Transportation Research Part A, Vol. 42, pp. 799-810.
  20. Takayasu, M. and Takayasu, H. (1993). "Phase transition and 1/f type noise in one dimensional asymmetric particle dynamics." Fractals, Vol. 1, Issue 4, pp. 860-866. https://doi.org/10.1142/S0218348X93000885
  21. TRB (1978). Grade effects on traffic flow stability and capacity, NCHRP Report 185.
  22. Wagner, P., Nagel, K. and Wolf, D. E. (1997). "Realistic multi-lane traffic rules for cellular automata." Physica A 234, pp. 687-698. https://doi.org/10.1016/S0378-4371(96)00308-1
  23. Yoon, B. (2009). "Development of lane-changing model for two-lane freeway traffic based on CA." Journal of Korean Society of Civil Engineers, Vol. 29, No. 3D, pp. 329-334 (in Korean).
  24. Yoon, B. (2011). "Development of lane-lane highway vehicle model based on discrete time and space." Journal of Korean Society of Civil Engineers, Vol. 31, No. 6D, pp. 785-791 (in Korean).