DOI QR코드

DOI QR Code

Evaluation of Short-Term Drought Using Daily Standardized Precipitation Index and ROC Analysis

일 단위 SPI와 ROC 분석을 이용한 단기가뭄의 평가

  • 유지영 (전북대학교 토목공학과) ;
  • 송호용 (한양대학교 대학원 건설환경공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경플랜트공학과) ;
  • 안재현 (서경대학교 토목건축공학과)
  • Received : 2013.04.08
  • Accepted : 2013.06.11
  • Published : 2013.09.30

Abstract

The Standardized Precipitation Index (SPI) is widely applied to evaluate for meteorological droughts. However, the SPI is limited to capture a drought event with a short duration, expecially shorter than one month. In this study, we proposed a daily SPI (DSPI) as a way to overcome the limitation of the monthly SPI for drought monitoring. In order to objectively assess the ability of the drought reproduction of the DSPI, we performed a receiver operating characteristic (ROC) analysis using the quantified drought records from official reports, newspapers, etc. The results of ROC analysis showed that the DSPI has an ability to reproduce short-term drought compared with other indices. It also showed that the main cause of historical droughts was the shortage of rainfall accumulated during the time period less than 90 days compared with the rainfall of normal years.

SPI(Standardized Precipitation Index)는 계산절차가 간단하기 때문에 기상학적 가뭄을 평가하는데 광범위하게 사용되고 있다. 그러나 월 단위 기반으로 산정되기 때문에 1달 이내의 짧은 지속기간을 가지는 가뭄사상을 포착하지 못하는 단점을 가지고 있다. 본 연구에서는 월 단위로 계산되는 SPI의 단점을 극복하기 위한 방안으로 일 단위 SPI(DSPI)를 제안하였다. 또한, DSPI의 가뭄재현능력을 객관적으로 평가하기 위해 과거의 가뭄발생기록을 이용하여 ROC 분석을 수행하였다. 이를 바탕으로 우리나라의 단기가뭄을 재현하는데 적절한 지속기간을 제시하였으며, 가뭄의 발생유무를 결정하는 데 활용하는 3가지 등급(보통, 심한, 극한 가뭄)별 DSPI의 가뭄예보능력을 검토하였다. 그 결과 3가지 등급에 대한 재현능력이 우수한 가뭄 지속기간을 결정하였다. 또한, 과거 2000년 이후에 발생한 우리나라 대부분의 가뭄은 90일(3개월) 이내의 누적 강수량이 평년의 수준에 비하여 부족하기 때문에 발생한 기상학적 측면의 단기가뭄인 것으로 나타났다.

Keywords

References

  1. Ahn, J.-H., Hwang, P.-S. and Kang, S.-W. (2012). "The situation and corresponding in the spring drought, 2012." Magazine of Korea Water Resources Association, Vol. 45, No. 9, pp. 84-91 (in Korean).
  2. Byun, H. and Wilhite, D. A. (1999). "Objective quantification of drought severity and duration." Journal of Climate, Vol. 12, pp. 2747-2756. https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
  3. Choi, D. and Kim, S. (2010). "Revisiting Horton index using a conceptual soil water balance model." Journal of Civil Engineering, Vol. 30, No. 5B, pp. 471-477 (in Korean).
  4. Choi, G., Kwon, W.-T., Boo, K.-O. and Cha, Y.-M. (2008). "Recent spatial and temporal changes in means and extreme events of temperature and precipitation across the Republic of Korea." Journal of the Korean Geographical Society, Vol. 43, No. 5, pp.681-700 (in Korean).
  5. Fawcett, T. (2006). "An introduction to ROC analysis." Pattern Recognition Letters, No. 27, pp. 861-874.
  6. Kim, G. and Lee, J. (2011). "Evaluation of drought indices using the drought records." Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 639-652 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.8.639
  7. Kim, D.-H. and Yoo, C. (2006). "Analysis of spatial distribution of droughts in Korea through drought severity-duration-frequency analysis." Journal of Civil Engineering, pp. 1597-1600 (in Korean).
  8. Kim, D.-H., Yoo, C. and Kim, T.-W. (2011). "Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea." Advances in Water Resources, Vol. 34, No. 3, pp. 340-350. https://doi.org/10.1016/j.advwatres.2010.12.010
  9. Mason I. (1982). "A model for assessment of weather forecasts." Australian Meteorological Magazine, Vol. 30, pp. 291-303.
  10. McKee T. B., Nolan J. D. and John K. (1993). "The relationship of drought frequency and duration to time scales." Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, California, pp. 179-184.
  11. Ministry of Land, Infrastructure and Transport (2001). Drought records survey report in the 2001 (in Korean).
  12. Ministry of Land, Infrastructure and Transport (2005). Drought management monitoring system reports (in Korean).
  13. Tae Baek City (2009). The Drought Basic Books (in Korean).
  14. Yoo, C. (2006). "Long term analysis of wet and dry years in Seoul, Korea." Journal of Hydrology, Vol. 318, pp. 24-36. https://doi.org/10.1016/j.jhydrol.2005.06.002
  15. Yoo, C., Kim, D., Kim, T.-W. and Hwang, K.-M. (2008). "Quantification of drought using a rectangular pulses poisson process model." Journal of Hydrology, Vol. 355, pp. 34-48. https://doi.org/10.1016/j.jhydrol.2008.02.025

Cited by

  1. Sensitivity Assessment of Meteorological Drought Index using Bayesian Network vol.34, pp.6, 2014, https://doi.org/10.12652/Ksce.2014.34.6.1787
  2. Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.037
  3. Assessment of Meteorological Drought Using Cumulative Severity of Daily Standardized Precipitation Index vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.123
  4. Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100 vol.9, pp.8, 2017, https://doi.org/10.3390/w9080579
  5. ROC evaluation for MLP ANN drought forecasting model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.877
  6. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010 vol.10, pp.3, 2018, https://doi.org/10.3390/w10030327