DOI QR코드

DOI QR Code

다중 파괴모드를 고려한 사면의 시스템 신뢰도해석

System Reliability Analysis of Slope Considering Multiple Failure Modes

  • 조성은 (한경대학교 토목안전환경공학과)
  • Cho, Sung-Eun (Department of Civil, Safety, and Environmental Engrg., Hankyong National Univ.)
  • 투고 : 2013.07.05
  • 심사 : 2013.09.02
  • 발행 : 2013.09.30

초록

본 연구에서는 다중 파괴모드를 고려한 사면의 신뢰도해석에 대하여 연구한다. 해석은 크게 두 부분으로 나뉜다. 첫 번째, Der Kiureghian과 Dakessian이 제안한 barrier method를 사용하여 시스템 신뢰도에 크게 영향을 미치는 중요 파괴모드를 연속적으로 탐색하여 찾아낸다. 둘째로, 찾아낸 중요 파괴모드들과 이에 해당하는 설계점들을 바탕으로 사면의 파괴확률을 계산한다. 다중 파괴모드를 갖는 사면의 신뢰도해석에서 파괴확률은 다중점 일차신뢰도법, Ditlevsen의 구간해법 및 몬테카를로 시뮬레이션 등을 이용하여 평가할 수 있다. 본 연구에서는 예제 해석을 통하여 이들 방법들의 비교연구를 수행하였다. 해석결과는 토사사면에 많은 수의 잠재적인 파괴면이 존재할 수 있지만, 사면의 시스템 파괴확률은 소수의 중요 파괴면에 의해 지배된다는 것을 보여준다. 따라서 토사사면의 시스템 신뢰도해석을 위해서 가장 중요한 단계는 모든 중요 파괴모드를 효율적인 방법에 의해서 탐색하여 결정하는 것이다.

This work studies the reliability analysis of a slope that considers multiple failure modes. The analysis consists of two parts. First, significant failure modes that contribute most to system reliability are determined. The so-called barrier method proposed by Der Kiureghian and Dakessian to identify significant failure modes successively is employed. Second, the failure probability for the slope is estimated on the basis of the identified significant failure modes and corresponding design points. For reliability problems entailing multiple design points, failure probability can be estimated by the multi-point first-order reliability method (FORM), Ditlevsen's bounds method, and Monte Carlo simulation. In this paper, a comparative study between these methods has been made through example problems. Analysis results showed that while a soil slope may have a large number of potential slip surfaces, its system failure probability is usually governed by a few significant slip surfaces. Therefore, the most important step in the system reliability analysis for a soil slope is to identify all the significant failure modes in an efficient way.

키워드

참고문헌

  1. Kim, H. K. and Kim, S. S. (2011), "Slope Stability Analysis Considering Multi Failure Mode", Journal of the Korean Society for Railway, Vol.14, No.1, pp.24-30. https://doi.org/10.7782/JKSR.2011.14.1.24
  2. Cho, S. E. and Park, H. C. (2009), "Probabilistic Stability Analysis of Slopes by the Limit Equilibrium Method Considering Spatial Variability of Soil Property", Journal of Korean Geotechnical Society, Vol.25, No.12, pp.13-25.
  3. Barranco-Cicilia, F., Castro-Prates de Lima, E., and Sudati-Sagrilo, L. V. (2009), "Structural reliability analysis of limit state functions with multiple design points using evolutionary strategies", Ingeniería Investigacion y Tecnologia, Vol.10, No.2, pp.87-97.
  4. Bazaraa, M. S., Sherali, H. D., and Shetty C. M. (1993), Nonlinear programming, 2nd Ed., John Wiley and Sons.
  5. Bourinet, J. M., Mattrand, C., and Dubourg, V. (2009), "A review of recent features and improvements added to FERUM software", In Proc. of the Tenth International Conference on Structural Safety and Reliability (ICOSSAR'09), Osaka, Japan.
  6. Ching, J., Phoon, K. K., and Hu, Y. G. (2009), "Efficient evaluation of reliability for slopes with circular slip surfaces using importance sampling", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.6, pp.768-777. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000035
  7. Cho, S. E. (2010), "Probabilistic assessment of slope stability that considers the spatial variability of soil properties", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.7, pp.975-984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309
  8. Cho, S. E. (2013), "First-order reliability analysis of slope considering multiple failure modes", Engineering geology, Vol.154, pp.98-105. https://doi.org/10.1016/j.enggeo.2012.12.014
  9. Chowdhury, R. N. and Xu, D. W. (1995), "Geotechnical system reliability of slopes", Reliability Engineering and System Safety, Vol.47, No.3, pp.141-151. https://doi.org/10.1016/0951-8320(94)00063-T
  10. Cornell, C. A. (1967), "Bounds on the reliability of structural systems", Journal of the Structural Division (ASCE), Vol.93, No.1, pp.171-200.
  11. Cornell, C. A. (1971), "First-order uncertainty analysis of soils deformation and stability", In Proc. of the First International Conference on Application of Statistics and Probability to Soil and Structural Engineering, Hong Kong, pp.130-144.
  12. Der Kiureghian, A. and Dakessian, T. (1998), "Multiple design points in first and second-order reliability", Structural Safety, Vol.20, pp.37-49. https://doi.org/10.1016/S0167-4730(97)00026-X
  13. Ditlevsen, O. (1979), "Narrow reliability bounds for structural systems", Journal of Structural Mechanics, Vol.7, No.4, pp.453-472. https://doi.org/10.1080/03601217908905329
  14. Griffiths, D. V. and Fenton, G. A. (2004), "Probabilistic slope stability analysis by finite elements", Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.5, pp.507-518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
  15. Hassan, A. M. and Wolff, T. F. (1999), "Search algorithm for minimum reliability index of earth slopes", Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.4, pp.301-308. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(301)
  16. Haukaas, T. and Der Kiuregian, A. (2001), "A computer program for nonlinear finite element analysis", In Proc. of the Eighth International Conference on Structural Safety and Reliability, Newport Beach, CA.
  17. Hohenbichler, M. and Rackwitz, R. (1983), "First-order concepts in system reliability", Structural Safety, Vol.1, 177-188.
  18. Hong, H. P. and Roh, G. (2008), "Reliability evaluation of earth slopes", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.12, pp.1700-1705. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1700)
  19. Huang, J., Griffiths, D. V., and Fenton, G. A. (2010), "System reliability of slopes by RFEM", Soils and Foundations, Vol.50, No.3, pp.345-355.
  20. Ji, J. and Low, B. K. (2012), "Stratified response surfaces for system probabilistic evaluation of slopes", Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.11, pp.1398-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000711
  21. Kang, W. H. and Song, J. (2008), "Evaluation of multinormal integral and sensitivity by matrix-based system reliability method", In Proc. of the Tenth AIAA Nondeterministic Approaches Conference, Schaumburg, IL.
  22. Kim, J. Y. and Lee, S. R. (1997), "An improved search strategy for the critical slip surface using finite element stress fields", Computers and Geotechnics, Vol.21, No.4, pp.295-313. https://doi.org/10.1016/S0266-352X(97)00027-X
  23. Low, B. K., Zhang, J., and Tang, W. H. (2011), "Efficient system reliability analysis illustrated for a retaining wall and a soil slope", Computers and Geotechnics, Vol.38, No.2, pp.196-204. https://doi.org/10.1016/j.compgeo.2010.11.005
  24. Ng, K. S. (2005), Reliability analysis on the stability of slope, M.Sc. Thesis, Universiti Teknologi Malaysia, Kuala Lumpur, Johor Bahru, Malaysia.
  25. Oka, Y. and Wu, T. H. (1990), "System reliability of slope stability", Journal of Geotechnical Engineering (ASCE), Vol.116, No.8, pp. 1185-1189. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:8(1185)
  26. Zhang, J., Zhang, L. M., and Tang, W. H. (2011), "New methods for system reliability analysis of soil slopes", Canadian Geotechnical Journal, Vol.48, No.7, pp.1138-1148. https://doi.org/10.1139/t11-009
  27. Zhang, J., Huang, H. W., Juang, C. H., and Li, D. Q. (2013), "Extension of Hassan and Wolff method for system reliability analysis of soil slopes", Engineering geology, Vol.160, pp.81-88. https://doi.org/10.1016/j.enggeo.2013.03.029