DOI QR코드

DOI QR Code

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system

선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발

  • Ahn, Jong-Woo (Korean Register of Shipping) ;
  • Park, Sang-Kyun (Department of Power System Engineering, College of Ocean Science & Technology, Kunsan National University)
  • Received : 2013.07.02
  • Accepted : 2013.08.30
  • Published : 2013.09.30

Abstract

Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.

고체산화물형 연료전지는 높은 효율과 친환경적 특성을 가지고 있어 선박에 의한 대기 오염의 주 원인인 디젤 엔진을 대체할 수 있는 동력원으로 주목 받고 있다. 고체산화물형 연료전지의 높은 작동 온도는 고효율과 다양한 연료를 사용할 수 있고 고가의 촉매를 사용하지 않아도 되지만 고열에 의한 시스템의 손상이 발생할 수 있다. 따라서 고성능과 신뢰성을 확보하기 위해 온도제어기가 설계되어야 하고 시스템에 적용하기 전 제어기의 성능이 검증되어야 한다. 본 연구에서는 많은 비용과 시간을 필요로하는 전통적인 제어기 성능 검증 방식 대신에 Hardware-In-the-Loop Simulation 방식을 활용한 성능 검증 시스템을 개발하였고 고체산화물형 연료전지 시스템에 대한 온도제어기의 성능을 검증하였다.

Keywords

References

  1. O. Buhaug, J. J. Corbett, O. Endresen, V. Eyring, J. Faber, S. Hanayama, D. S. Lee, D. Lee, H. Lindstad, A. Z. Markowsak, A. Mjelde, D. Nelissen, J. Nilsen, C. Palsson, J. J. Winebrake, W. Wu, and K. Yoshida, Second IMO GHG Study, International Maritime Organization (IMO) London, UK, 2009.
  2. IMO, "Chapter 4 Regulations on Energy Efficiency for Ships," Marine Environment Protection Committee 62/WP. 11/Add. 1/Rev.1, 2011.
  3. S. Gunter, "Fuel cells going on-board," Journal of Power Sources, vol. 86, no. 1-2, pp. 61-67, 2000. https://doi.org/10.1016/S0378-7753(99)00414-0
  4. K. C. T. Lawrence, W. Steven, M. Niall, U. Bernhard, and M. -B. Ricardo, "Soild oxide fuel cell/gas turbine trigeneration system for marine application," Journal of Power Sources, vol. 196, no. 6, pp. 3149-3162, 2011. https://doi.org/10.1016/j.jpowsour.2010.11.099
  5. C. T. Michael and C. Lei, "Integrated thermal management strategy and materials for solid oxide fuel cells," Journal of Power Sources, vol. 196, no. 23, pp. 10074-10078, 2011. https://doi.org/10.1016/j.jpowsour.2011.08.100
  6. V. Periasamy, H. Shahin, and O. T. Moses, "A novel concept for improved thermal management of the planar SOFC," Chemical Engineering Research and Design, vol. 91, no. 3, pp. 560-572, 2013. https://doi.org/10.1016/j.cherd.2012.09.004
  7. F. Vogler and G. Wursig, "Safety considerations and approval procedures for the intergration of fuel cells on board of ships," International Conference on Hydrogen Safety, paper 7, 2009. [Online]. Available: http://conference.ing.unipi.it/ichs/images/stories/papers/7.pdf
  8. H. -S Kim, J. -H. Ryu, and J. -W. Yim, "A performance evaluation method of a steering HILS system for vehicle mechatronic system development and test," The Korean Society of Automotive Engineers, vol. 9, no. 3, pp. 164-172, 2001 (in Korean).
  9. M. -G. Morteza, N. Mostafa and J. Soheil, "Real-time multi-rate HIL simulation platform for evaluation of a jet engine fuel controller," Simulation Modelling Practice and Theory, vol. 19, no. 3, pp. 996-1006, 2011. https://doi.org/10.1016/j.simpat.2010.12.011
  10. R. M. Moore, K. H. Hauer, G. Randolf, and M. Virji, "Fuel cell hardware-in-loop," Journal of Power Sources, vol. 162, no. 1, pp. 302-308, 2006. https://doi.org/10.1016/j.jpowsour.2006.06.066
  11. G. Randolf and R. M. Moore, "Test system for hardware-in-loop evaluation of PEM fuel cells and auxiliaries," Journal of Power Sources, vol. 158, no. 1, pp. 392-396, 2006. https://doi.org/10.1016/j.jpowsour.2005.09.058
  12. J. -W. Yun, J. -Y. Han, K. -T. Kim, and S. -S. Yu, "Model based hardware in the loop simulation of thermal management system for performance analysis of proton exchange membrane fuel cell," Trans. of Korean Hydrogen and New Energy Society, vol. 23, no. 4, pp. 323-329, 2012 (in Korean). https://doi.org/10.7316/KHNES.2012.23.4.323
  13. EUtech Scientific Engineering, http://www.eutech-scientific.de/products-services/tools/thermolib.html, Accessed June 11, 2013.
  14. National Instruments, PXI platform, http://www.ni.com/pxi/ko/, Accessed April 1, 2013