DOI QR코드

DOI QR Code

주파수 선택적 페이딩을 갖는 수중 음향 채널에서 COFDM의 성능

Performance of COFDM in Underwater Acoustic Channel with Frequency Selective Fading

  • 서철원 (부경대학교 정보통신공학과) ;
  • 박지현 (부경대학교 정보통신공학과) ;
  • 박규칠 (부경대학교 정보통신공학과) ;
  • 윤종락 (부경대학교 정보통신공학과)
  • 투고 : 2013.07.16
  • 심사 : 2013.08.22
  • 발행 : 2013.09.30

초록

수중 음향 통신 채널에서 주파수 선택적 페이딩에 강한 OFDM(Orthogonal Frequency Division Multiplexing)에 전방오류정정 기법을 적용한 COFDM(Coded OFDM)의 성능을 평가하였다. OFDM은 광대역신호를 협대역 신호로 나누어 전송하는 기법으로 다중경로에 의한 성능저하를 해결하는데 효과적인 전송기법이지만, 특정 부 채널에 깊은 페이딩이 있는 경우에 오류가 증가하여 성능이 저하된다. 이러한 페이딩에 대한 오류를 감소시키기 위해 컨벌루션 코드를 적용한 COFDM을 제안한다. 다중 경로 채널에서 COFDM이 OFDM에 비해 상대적으로 우수한 전송성능을 보였다.

In this paper, performance of COFDM (Coded Orthogonal Frequency Division Multiplexing) which is OFDM with a forward error correction code, is studied in frequency selective fading underwater acoustic communication channel. The OFDM is a multiplexing technique resistant to frequency selective multipath channel. In OFDM, a broadband information signal is transformed into several narrow band signals and transmits narrow band signals whose bandwidths are less than the channel coherence bandwidth. However, its performance is degraded in a specific narrow band signal due to its deep fading by multipath. To mitigate this degradation, COFDM which is OFDM with convolution code as a forward error correction code, is evaluated. The performance of COFDM is found to be better than that of OFDM in multipath channel.

키워드

참고문헌

  1. R. J. Urick, Principles of Underwater Sound 3th Edition, (McGraw-Hill, New York, 1983), pp. 99-233.
  2. M. Chitre, S. Shahabudeen and M. Stojanovic, "Underwater acoustic communications and networking: recent advances and future challenges," J. Marine Tech. Soc., 42, 103-116 (2008).
  3. G. Zhang, J. M. Hovem, H. Dong, and L. Liu, "Experimental studies of underwater acoustic communications over multipath channels," SENSORCOMM 2010, IEEE, 458-461 (2010).
  4. J. Ribas, D. Sura, and M. Stojanovic, "Underwater wireless video transmission for supervisory control and inspection using acoustic OFDM," IEEE OCEANS 2010, IEEE, 1-9 (2010).
  5. R. V. Nee and R. prasad, OFDM for Wireless Multimedia Communications (Artech House, Norwood 2000), pp.33-58.
  6. L. Liu, Y, Wang, L. Li, X. Zhang, and J. Wang, "Design and implementation of channel coding for underwater acoustic system," ASICON, IEEE, 497-500 (2009).
  7. M. Stojanovic and J. C. Preisig, "Underwater acoustic communication channels: propagation models and statistical characterization," Communications Magazine, IEEE, 47, 84-89 (2009).
  8. K. Park, J. Park, S. W. Lee, J. W. Jung, J. Shin, and J. R. Yoon, "Performance evaluation of underwater acoustic communication in frequency selective shallow water" (in Korean), J. Acoust. Soc. Kor. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
  9. J. Kim, K. Park, J. Park, and J. R. Yoon, "Coherence bandwidth effects on underwater image transmission in multipath channel," Jpn. J. Appl. Phys. 50, 07HG05-1-07HG05-5 (2011). https://doi.org/10.7567/JJAP.50.07HG05
  10. J. Park, J. Kim and J. R. Yoon,"Effect of text transmission performance on delay spread by water surface fluctuation in underwater multipath channel" (in Korean), J. Electronic. Soc. Kor, TC1,1-5 (2011).
  11. W. K. Lam and R. F. Ormondroyd, "A coherent COFDM modulation system for a time-varying frequency selective underwater acoustic channel," 7th Oceanography Eng., IEEE, 198-203 (1997).
  12. J. Huang, C. He, X. Shen, and Q. Zhang, "High-speed underwater acoustic communication based on OFDM," Convention 2005, IEEE, 1135-1138 (2005).
  13. J. F. Sifferlen, H. C. Song, W. S. Hodgkiss, W. A. Kuperman, and J. M. Stevenson, "An iterative equalization and decoding approach for underwater acoustic communication," J. Oceanic Eng. 33, 182-197 (2008). https://doi.org/10.1109/JOE.2008.923552
  14. J. Trubuil, A. Goalic, and N. Beuzelin, "An overview of channel coding for underwater acoustic communications," MILCOM 2012, IEEE, 1-7 (2012).
  15. A. Goalic, J. Trubuil, and N. Beuzelin, "Channel coding for underwater acoustic communication system," Oceans 2006, IEEE, 1-4 (2006).

피인용 문헌

  1. Study on Hidden Period Estimation in Propeller Noise by Applying Compressed Sensing to Auto-Correlation and Filter-Bank Structure vol.40, pp.12, 2015, https://doi.org/10.7840/kics.2015.40.12.2476
  2. Hidden Period Estimation in the Broad Band Propeller Noise Using Auto-Correlation and Filter-Bank Structure vol.39B, pp.8, 2014, https://doi.org/10.7840/kics.2014.39B.8.538
  3. Effect of frequency dependent multipath fading on non-coherent underwater communication system vol.35, pp.4, 2016, https://doi.org/10.7776/ASK.2016.35.4.295