DOI QR코드

DOI QR Code

Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Correlation Technique

이미지 상관 기법을 이용한 풍력 발전 블레이드용 복합재료의 기공 결함 검출능

  • Kim, Jong Il (Center for Energy Materials, Korea Research institute of Standard and Science) ;
  • Huh, Yong Hak (Center for Energy Materials, Korea Research institute of Standard and Science) ;
  • Lee, Gun Chang (Center for Energy Materials, Korea Research institute of Standard and Science)
  • 김종일 (한국표준과학연구원 에너지소재표준센터) ;
  • 허용학 (한국표준과학연구원 에너지소재표준센터) ;
  • 이건창 (한국표준과학연구원 에너지소재표준센터)
  • Received : 2013.01.07
  • Accepted : 2013.08.02
  • Published : 2013.10.01

Abstract

Defects that occur during the manufacturing process or operation of a wind turbine blade have a great influence on its life and safety. Typically, defects such as delamination, pore, wrinkle and matrix crack are found in a blade. In this study, the detectability of the pores, a type of defect that frequently occur during manufacturing, was examined from the full field strain distribution determined with the image correlation technique. Pore defects were artificially introduced in four-ply laminated GFRP composites with $0^{\circ}/{\pm}45^{\circ}$ fiber direction. The artificial pores were introduced in consideration of their size and location. Three different-sized pores with diameter of 1, 2 and 3 mm were located on the top and bottom surface and embedded. By applying static loads of 0-200 MPa, the strain distributions over the specimen with the pore defects were determined using image correlation technique. It was found the pores with diameter exceeding 2 mm can be detected in diameter.

풍력 발전 블레이드의 제조 및 운영 중에 발생하는 결함들은 블레이드의 수명과 안전성에 큰 영향을 미친다. 일반적으로 블레이드의 제조 과정에서는 박리, 기공, 주름, 모재 균열 등과 같은 결함이 발생한다. 본 연구에서는 이미지 상관 기법을 이용하여 변형률 분포를 확인함으로써 블레이드의 제조 과정에서 주로 나타나는 결함 중 하나인 기공 결함의 검출능을 조사하였다. $0^{\circ}/{\pm}45^{\circ}$의 섬유 방향을 가진 4 Ply 로 적층된 GFRP 복합재 시험편에 인공적인 기공 결함을 삽입하여 기공의 크기 및 위치에 따른 검출 의존성을 조사하였다. 기공의 크기는 지름 1, 2, 3 mm 이며, 기공의 위치는 시험편 표면으로부터 0.5, 1.0, 1.5 mm 깊이에 삽입하였다. 부하된 시험 하중은 최대 200 MPa 이며, 이미지 상관 기법을 통해 변형률 분포를 획득하여 지름 2, 3 mm의 기공과 깊이 0.5, 1.0 mm의 기공 결함을 검출할 수 있었다.

Keywords

References

  1. Toft, H. S., Kim, B., Berring, P. and Sørensen, J. D., 2011, "Defect Distribution and Reliability Assessment of Wind Turbine Blades," Engineering Structures, Vol. 33, pp. 171-180. https://doi.org/10.1016/j.engstruct.2010.10.002
  2. Pan, B., Qian, K., Xie, H and Asundi, A., 2009, "Two-Dimensional Digital Image Correlation for Inplane Displacement and Strain Measurement: A Review," Meas. Sci. Technol., Vol. 20, TR 062001, pp. 17.
  3. Revilock, D. M., Thesken, J. C., Schmidt, T. E. and Forsythe, B. S., 2007, "Three-Dimensional Digital Image Correlation of a Composite Overwrapped pressure Vessel During Hydrostatic Pressure Tests," NASA TM 214938.
  4. Puri, A., McGuan, M. and Jensen, F. M., 2009, "Nondestructive Analysis of Wind Turbine Blade Structural Integrity," Proceedings of PVP2009 77501.
  5. Kang, J. W., Kwon, O. H., Kim, T. K. and Cho, S. J., 2010, "Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method," Journal of the Korea Society for Power System Engineering, Vol. 14, No. 5, pp. 17-23.
  6. GOM mbH, 2009, "ARAMIS User Manual," GOM mbH
  7. Huh, Y. H., Kim, J. I., Kim, D. J. and Lee, G. C., 2012, "Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 9, pp. 1053-1057. https://doi.org/10.3795/KSME-A.2012.36.9.1053

Cited by

  1. Evaluation of Crack Resistance Properties on Particulate Reinforced Composite Propellant using Digital Image Correlation vol.19, pp.6, 2015, https://doi.org/10.6108/KSPE.2015.19.6.026