DOI QR코드

DOI QR Code

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers

하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향

  • Kang, Nam-Hee (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Chon, Chul-Min (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Jou, Hyeong-Tae (Maritime Security Center, Korea Institute of Ocean Science & Technology(KIOST)) ;
  • Lee, Sujeong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
  • Received : 2013.08.16
  • Accepted : 2013.09.06
  • Published : 2013.09.27

Abstract

Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

Keywords

References

  1. S. Lee, H. T. Jou, C. M. Chon, N. H. Kang, and S. B. Cho, J. Kor. Cer. Soc., 50, 134 (2013). https://doi.org/10.4191/kcers.2013.50.2.134
  2. A. Van Riessen, C. T. Nigel, Fuel, 111, 829 (2013). https://doi.org/10.1016/j.fuel.2013.04.015
  3. A. Van Riessen, C. T. Nigel, Fuel, 106, 569 (2013). https://doi.org/10.1016/j.fuel.2012.11.070
  4. S. Kumar and R. Kumar, Ceram. Int, 37, 533 (2001).
  5. J. Temuujin, R. P. Williams, and A. van Riessen, J. Mater. Process. Technol., 209, 5276 (2009). https://doi.org/10.1016/j.jmatprotec.2009.03.016
  6. J. L. Provis, C. Z. Young, P. Duxson and J. S. J. van Deventer, Eng. Asp., 336, 57 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.019
  7. S. Lee, M.D. Seo, Y. J. Kim, H. H. Park, T. N. Kim, Y. Hwang, and S. B. Cho, Int. J. Miner. Proc., 97, 20 (2010). https://doi.org/10.1016/j.minpro.2010.07.007
  8. T. H. Ha, S. Muralidhara, J. H. Bae, Y. C., Lee, H. G., Park, K. W., Kim, D. K., Constr. Build. Mater. 19, 509 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.005
  9. E. Freeman, Y. M. Gao, R. Hurt, E. Suuberg, Fuel, 76, 761 (1997). https://doi.org/10.1016/S0016-2361(96)00193-7
  10. T. Silverstrim, H. Rostami, B. Clark, and J. Martin, Nineteenth International Cement Microscopy Association, Cincinnati, OH, (1997).
  11. H. K. Park, S. W. Yoo, M. Y. Jung, JKIRR, 19, 16(2010).
  12. H. Rahier, J. F. Denayer; B. Van Mele, J. Mater. Sci., 38, 3131 (2003). https://doi.org/10.1023/A:1024733431657
  13. A. Nazari, Neural Comput & Applic, 23, 391 (2013).
  14. R. P. Williams and A. van Riessen, Fuel, 89, 3683 (2010). https://doi.org/10.1016/j.fuel.2010.07.031
  15. C. M. Chon, S. Lee, and S. W. Lee, J. Min. Soc. Kor., 26, 27 (2013)(inKorean). https://doi.org/10.9727/jmsk.2013.26.1.27
  16. K. H. Pedersen, A. D. Jensen, M. S. Skjøth-Rasmussen, K. Dam-Johansen, Prog. Energy Combust. Sci., 34, 135 (2008). https://doi.org/10.1016/j.pecs.2007.03.002
  17. M. C. Fuerstenau, K. N. Han, Principles of Mineral Processing, 1st ed, p.169, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, USA (2003).
  18. K. Komnitsas and D. Zaharaki, Miner. Eng., 20, 1261(2007). https://doi.org/10.1016/j.mineng.2007.07.011
  19. P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer, Colloids Surf., A: Physicochem. Eng. Asp., 269, 47 (2005). https://doi.org/10.1016/j.colsurfa.2005.06.060
  20. M. R. Rowles, J. V. Hanna, K. J. Pike, M. E. Smith, B. H. O'Connor, Appl. Magn. Reson., 32, 663 (2007). https://doi.org/10.1007/s00723-007-0043-y
  21. M. Steveson and K. Sagoe-Crentsil, J. Mater. Sci., 40, 4247 (2005). https://doi.org/10.1007/s10853-005-2794-x
  22. R. A. Fletcher, K. J. D. MacKenzie, C. L. Nicholson, and S. Shimada, J. Eur. Ceram. Soc., 25, 1471 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.06.001
  23. M. Rowles and B. O'Connor, J. Mater. Chem., 13, 1161 (2003). https://doi.org/10.1039/b212629j
  24. D. Antenucci, C. Philippart, G. Lorenzi, J. Davidovits, C. Fernandez-Pereira, Y. Luna Galiano, X. Querol, N. Moreno, M. Izquierdo, E. Alvarez, O. Fonte, F. Plana, H. Nugteren, V. Butselaar and L. Schouten, Understanding and mastering coal fired ashes geopolymerisation process in order to turn potential into profit (GEOASH), 1st ed, p.7, European Commission, Luxembourg, Brussels (2009).

Cited by

  1. Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.253