참고문헌
- Kwak, N.-S., Sim, J. B. and Hwang, T. S., "Synthesis and Characteristics of UV Curable Dimethyl 5-Sulfoisophthalate Sodium Saltco-diethylene Glycol with Maleic and Phthalic Anhydride Copolymers (DMSIP-co-DEG-co-MA/PA) for Application in Redox Flow Batteries," Macromol. Res., 21(9), 941-948(2013). https://doi.org/10.1007/s13233-013-1115-5
- Sum, E. and Skylass-Kazacos, M., "A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications," J. Power Sources, 15(2-3), 179-190(1985). https://doi.org/10.1016/0378-7753(85)80071-9
- Sum, E., Rychcik, M. and Skylass-Kazacos, M., "Investigation of the V(V)-V(IV) System for Use in the Positive Half-cell of a Redox Battery," J. Power Sources, 16(2), 85-95(1985). https://doi.org/10.1016/0378-7753(85)80082-3
- Mohammadi, T. and Skylass-Kazacos, M., "Modification of Anionexchange Membranes for Vanadium Redox Flow Battery Applications," J. Power Sources, 63(2), 179-186(1996). https://doi.org/10.1016/S0378-7753(96)02463-9
- Yang, C. Y., "Catalytic Electrodes for the Redox Flow Cell Energy Storage Device," J. Appl. Electrochem., 12(4), 425-434(1982). https://doi.org/10.1007/BF00610484
- Codina, G., Perez, J. R., Lopez-Atalaya, M., Vazquez, J. L. and Aldaz, A., "Development of a 0.1 kW Power Accumulation Pilot Plant Based on an Fe-Cr Redox Flow Battery Part 1. Considerations on Flow-distribution Design," J. Power Sources, 48(3), 293-302 (1994). https://doi.org/10.1016/0378-7753(94)80026-X
- Bartolozzi, M., "Development of Redox Flow Batteries a Historical Biblography," J. Power Sources, 27(3), 219-234(1989). https://doi.org/10.1016/0378-7753(89)80037-0
- Lopez-Atalaya, M., Codina, G., Perez, J. R., Vazquez, J. L. and Aldaz, A., "Optimization Studies on a Fe-Cr Redox Flow Battery," J. Power Sources, 39(2), 147-154(1992). https://doi.org/10.1016/0378-7753(92)80133-V
- Codina, G. and Aldaz, A., "Scale-up Studies of an Fe-Cr Redox Flow Battery Based on Shunt Current Analysis," J. Appl. Electrochem., 22(7), 668-674(1992). https://doi.org/10.1007/BF01092617
- Savinell, R. F., Liu, C. C., Galasco, R. T. and Chiang, S. H., "Discharge Characteristics of a Soluble Iron-Titanium Battery System," J. Electrochem. Soc., 126(3), 357-360(1979). https://doi.org/10.1149/1.2129043
- Zhao, P., Zhang, H., Zhou, H. and Yi, B., "Nickel Foam and Carbon Felt Applications for Sodium Polysulfide/bromine Redox Flow Battery Electrodes," Electrochimica Acta, 51(6), 1091-1098 (2005). https://doi.org/10.1016/j.electacta.2005.06.008
- Lim, H. S., Lackner, A. M. and Knechtli, R. C., "Zinc-Bromine Secondary Battery," J. Electrochem. Soc., 124(8), 1154-1157(1977). https://doi.org/10.1149/1.2133517
- Liu, Q., Sleightholme, A. E. S., Shinkle, A. A., Li, Y. and Thompson, L. T., "Non-aqueous Vanadium Acetylacetonate Electrolyte for Redox Flow Batteries," Electrochem. Commun., 11(12), 2312-2315 (2009). https://doi.org/10.1016/j.elecom.2009.10.006
- Matsuda, Y., Tanaka, K., Okada, M., Takasu, Y. and Morita, M., "A Rechargeable Redox Battery Utilizing Ruthenium Complexes with Non-aqueous Organic Electrolyte," J. Appl. Electrochem., 18(6), 909-914(1988). https://doi.org/10.1007/BF01016050
- Gupta, K. C., Abdulkadir, H. K. and Chand, S., "Polymer-immobilized N,N'-bis(acetylacetone)ethylenediamine Cobalt(II) Schiff Base Complex and Its Catalytic Activity in Comparison with That of Its Homogenized Analogue," J. Appl. Polym. Sci., 90(5), 1398-1411(2003). https://doi.org/10.1002/app.12596
- Chakrabarti, M. H., Dryfe, R. A. W. and Roberts, E. P. L., "Evaluation of Electrolytes for Redox Flow Battery Applications," Electrochim. Acta, 52(5), 2189-2195(2007). https://doi.org/10.1016/j.electacta.2006.08.052
-
Yamamura, T., Shiokawa, Y., Yamana, H. and Moriyama, H., "Electrochemical Investigation of Uranium
$\beta$ -diketonates for All-uranium Redox Flow Battery," Electrochim. Acta, 48(1), 43-50(2002). https://doi.org/10.1016/S0013-4686(02)00546-7 - Liu, Q., Shinkle, A. A., Li, Y., Monroe, C. W., Thompson, L. T. and Sleightholme, A. E. S., "Non-aqueous Chromium Acetylacetonate Electrolyte for Redox Flow Batteries," Electrochem. Commun., 12(11), 1634-1637(2010). https://doi.org/10.1016/j.elecom.2010.09.013
- Mun, J., Lee, M. J., Park, J. W., Oh, D. J., Lee, D. Y. and Doo, S. G., "Non-aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2'-bipyridine) Complex Electrolyte, Electrochem," Solid State Lett., 15(6), A80-A82(2012). https://doi.org/10.1149/2.033206esl
- Sleightholme, A. E. S., Shinkle, A. A., Liu, Q., Li, Y., Monroe, C. W. and Thompson, L. T., "Non-aqueous Manganese Acetylacetonate Electrolyte for Redox Flow Batteries," J. Power Sources, 196(13), 5742-5745(2011). https://doi.org/10.1016/j.jpowsour.2011.02.020
- Zhang, D., Lan, H. and Li, Y., "The Application of a Non-aqueous bis(acetylacetone)ethylenediamine Cobalt Electrolyte in Redox Flow Battery," J. Power Sources, 217(1), 199-203(2012). https://doi.org/10.1016/j.jpowsour.2012.06.038
- Shin, S.-H., Yun, S.-H. and Moon, S.-H., "A Review of Current Developments in Non-aqueous Redox Flow Batteries: Characterization of Their Membranes for Design Perspective," RSC Advances, 3(24), 9095-9116(2013). https://doi.org/10.1039/c3ra00115f
- Zhang, B., Zhang, S., Xing, D., Han, R., Yin, C. and Jian, X., "Quaternized Poly(phthalazinone ether ketone ketone) Anion Exchange Membrane with Low Permeability of Vanadium Ions for Vanadium Redox Flow Battery Application," J. Power Sources, 217(1), 296-302(2012). https://doi.org/10.1016/j.jpowsour.2012.06.027
- Seo, S.-J., Kim, B.-C., Sung, K.-W., Shim, J., Jeon, J.-D., Shin, K.-H., Shin, S.-H., Yun, S.-H., Lee, J.-Y. and Moon, S.-H., "Electrochemical Properties of Pore-filled Anion Exchange Membranes and Their Ionic Transport Phenomena for Vanadium Redox Flow Battery Applications," J. Membr. Sci., 428(1), 17-23(2013). https://doi.org/10.1016/j.memsci.2012.11.027
- Qiu, J., Zhang, J., Chen, J., Peng, J., Xu, L., Zhai, M., Li, J. and Wei, G., "Amphoteric Ion Exchange Membrane Synthesized by Radiation-induced Graft Copolymerization of Styrene and Dimethylaminoethyl Methacrylate Into PVDF Film for Vanadium Redox Flow Battery Applications," J. Membr. Sci., 334(1-2), 9-15(2009). https://doi.org/10.1016/j.memsci.2009.02.009
- Fang, J., Xu, H., Wei, X., Guo, M., Lu, X., Lan, C., Zhang, Y., Liu, Y. and Peng, T., "Preparation and Characterization of Quaternized Poly(2,2,2-trifluoroethyl methacrylate-co-N-vinylimidazole) Membrane for Vanadium Redox Flow Battery," Polym. Adv. Technol., 24(2), 168-173(2013). https://doi.org/10.1002/pat.3066
-
Teng, X., Zhao, Y., Xi, J., Wu, Z., Qiu, X. and Chen, L., "Nafion/organic Silica Modified
$TiO_2$ Composite Membrane for Vanadium Redox Flow Battery via in situ Sol-gel Reactions," J. Membr. Sci., 341(1-2), 149-154(2009). https://doi.org/10.1016/j.memsci.2009.05.051 - Wang, N., Yu, J., Zhou, Z., Fang, D., Liu, S. and Liu, Y., "SPPEK/TPA Composite Membrane as a Separator of Vanadium Redox Flow Battery," J. Membr. Sci., 437(1), 114-121(2013). https://doi.org/10.1016/j.memsci.2013.02.053
피인용 문헌
- Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery vol.19, pp.1, 2016, https://doi.org/10.5229/JKES.2016.19.1.21
- Insights on the Electrochemical Activity of Porous Carbonaceous Electrodes in Non-Aqueous Vanadium Redox Flow Batteries vol.164, pp.14, 2017, https://doi.org/10.1149/2.0621714jes
- 효율적인 전 바나듐 레독스 흐름 전지를 위한 세공충진 음이온교환막의 최적 설계 vol.30, pp.1, 2013, https://doi.org/10.14579/membrane_journal.2020.30.1.21