DOI QR코드

DOI QR Code

Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion

마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조

  • Nam, Jin-Oh (Department of Chemical Engineering, Chungnam National University) ;
  • Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Jongmin (Department of Chemical Engineering, Chungnam National University) ;
  • Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2013.07.07
  • Accepted : 2013.08.09
  • Published : 2013.10.01

Abstract

In this study, we present simple microfluidic approach for the synthesis of monodisperse microcapsules by using droplet-based system. We generate double emulsion through single step in the microfluidic device having single junction while conventional approaches are limited in surface treatment for the generation of double emulsion. First, we have injected disperse fluid containing FC-77 oil and photocurable ethoxylated trimethylolpropane triacrylate (ETPTA) and water containing 3 wt% poly(vinyl alcohol) (PVA) as continuous phase into microfluidic device. Under the condition, we easily generate double emulsion with high monodispersity by using flow focusing. The double emulsion droplets are transformed into microcapsules under the UV irradiation via photopolymerization. In addition, we control thickness of double emulsion's shell by controlling flow rate of ETPTA. We also show that the size of double emulsions can be controlled by manipulation of flow rate of continuous phase. Furthermore, we synthesize microcapsules encapsulating various materials for the application of drug delivery systems.

본 연구는 액적기반 미세유체 장치를 이용하여 단분산성 마이크로캡슐의 간단한 제조방법에 관한 것이다. 본 연구에서 제시한 제조 방법은 이중액적을 생성시키기 위해 기존의 복잡한 표면처리가 필요한 이중 유화과정을 대신하여 하나의 교차점을 가진 단일공정을 사용하고자 한다. 먼저, 분산상은 광중합이 가능한 ethoxylated trimethylolpropane triacrylate (ETPTA) 단량체와 fluorocarbon (FC-77) 오일을 사용하고 연속상은 poly(vinyl alcohol) (PVA) 수용액을 사용하였으며, 미세유체 채널 내부로 흘려 주면 하나의 교차점에 흐름이 집중되어 균일한 이중액적을 생성한다. 생성된 이중액적은 광중합을 통해 마이크로캡슐을 제조한다. 상기 방법은 ETPTA 유체의 부피유속을 조절하여 이중액적의 껍질두께 제어가 가능하고 연속상인 물의 부피유속을 조절하여 전체 직경을 제어할 수 있다. 더 나아가, 본 시스템을 사용하여 다양한 물질들을 함입한 마이크로캡슐을 제작할 수 있으며, 약물전달시스템의 응용 기술에 활용될 것으로 예측된다.

Keywords

References

  1. Hennequin, Y., Pannacci, N., de Torres, C. P., Tetradis-Meris, G., Chapuliot, S., Bouchaud, E. and Tabeling, P., "Synthesizing Microcapsules with Controlled Geometrical and Mechanical Properties with Microfluidic Double Emulsion Technology," Langmuir, 25(14), 7857-7861(2009). https://doi.org/10.1021/la9004449
  2. Freiberg, S. and Zhu, X., "Polymer Microspheres for Controlled Drug Release," Int. J. Pharm., 282(1-2), 1-18(2004). https://doi.org/10.1016/j.ijpharm.2004.04.013
  3. Ichikawa, H. and Fukumori, Y., "A Novel Positively Thermosensitive Controlled-release Microcapsule with Membrane of Nano-sized Poly(N-isopropylacrylamide) Gel Dispersed in Ethylcellulose Matrix," J. Control., 63(1-2), 107-119(2000). https://doi.org/10.1016/S0168-3659(99)00181-9
  4. Yoshida, K., Sekine, T., Matsuzaki, F., Yanaki, T. and Yamaguchi, M., "Stability of Vitamin A in Oil-in-water-in-oil-type Multiple Emulsions," J. Am. Oil. Chem. Soc., 76(2), 195-200(1999).
  5. Vasiljevic, D., Parojcic, J., Primorac, M. and Vuleta, G., "An Investigation into the Characteristics and Drug Release Properties of Multiple W/O/W Emulsion Systems Containing Low Concentration of Lipophilic Polymeric Emulsifier," Int. J. Pharm., 309(1-2), 171-177(2006). https://doi.org/10.1016/j.ijpharm.2005.11.034
  6. Elsoda, M., Pannell, L. and Olson, N., "Microencapsulated Enzyme-Systems for the Acceleration of Cheese Ripening," J. Microencapsul., 6(3), 319-326(1989). https://doi.org/10.3109/02652048909019914
  7. Bonilla, E., Azuara, E., Beristain, C. I. and Vernon-Carter, E. J., "Predicting Suitable Storage Conditions for Spray-dried Microcapsules Formed with Different Biopolymer Matrices," Food Hydrocolloids, 24(6-7), 633-640(2010). https://doi.org/10.1016/j.foodhyd.2010.02.010
  8. Esser-Kahn, A. P., Sottos, N. R., White, S. R. and Moore, J. S., "Programmable Microcapsules from Self-Immolative Polymers," J. Am. Chem. Soc., 132(30), 10266-10268(2010). https://doi.org/10.1021/ja104812p
  9. Kurayama, F., Yoshikawa, T., Furusawa, T., Bahadur, N. M., Handa, H., Sato, M. and Suzuki, N., "Microcapsule with a Heterogeneous Catalyst for the Methanolysis of Rapeseed Oil," Bioresour. Technol., 135, 652-658(2013). https://doi.org/10.1016/j.biortech.2012.11.014
  10. Chen, P. W., Erb, R. M. and Studart, A. R., "Designer Polymer-Based Microcapsules Made Using Microfluidics," Langmuir, 28(1), 144-152(2012). https://doi.org/10.1021/la203088u
  11. Nisisako, T., "Microstructured Devices for Preparing Controlled Multiple Emulsions," Chem. Eng. Technol., 31(8), 1091-1098(2008). https://doi.org/10.1002/ceat.200800119
  12. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(5), 545-555(2010).
  13. Anna, S. L., Bontoux, N. and Stone, H. A., "Formation of Dispersions Using "Flow Focusing" in Microchannels," Appl. Phys. Lett., 82(3), 364-366(2003). https://doi.org/10.1063/1.1537519
  14. Xu, S. Q., Nie, Z. H., Seo, M., Lewis, P., Kumacheva, E., Stone, H. A., Garstecki, P., Weibel, D. B., Gitlin, I. and Whitesides, G. M., "Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition," Angew. Chem.-Int. Edit., 44(5), 724-728(2005). https://doi.org/10.1002/anie.200462226
  15. Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E. and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed. Microdevices, 9(6), 855-862(2007). https://doi.org/10.1007/s10544-007-9098-7
  16. Choi, C. H., Jung, J. H., Hwang, T. S. and Lee, C. S., "In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17(3), 163-167(2009). https://doi.org/10.1007/BF03218673
  17. Jung, J. H., Choi, C. H., Hwang, T. S. and Lee, C. S., "Efficient In situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device using Increase of Residence Time of Droplets," Biochip J., 3(1), 44-49(2009).
  18. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., "Monodisperse Double Emulsions Generated from a Microcapillary Device," Science, 308(5721), 537-541(2005). https://doi.org/10.1126/science.1109164
  19. Kang, S. M., Choi, C. H., Hwang, S., Jung, J. M. and Lee, C. S., "Microfluidic Preparation of Monodisperse Multiple Emulsion Using Hydrodynamic Control," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(4), 733-737(2012). https://doi.org/10.9713/kcer.2012.50.4.733
  20. Deng, N. N., Meng, Z. J., Xie, R., Ju, X. J., Mou, C. L., Wang, W. and Chu, L. Y., "Simple and Cheap Microfluidic Devices for the Preparation of Monodisperse Emulsions," Lab Chip, 11(23), 3963-3969(2011). https://doi.org/10.1039/c1lc20629j
  21. Abate, A. R. and Weitz, D. A., "High-Order Multiple Emulsions Formed in Poly(dimethylsiloxane) Microfluidics," Small, 5(18), 2030-2032(2009). https://doi.org/10.1002/smll.200900569
  22. Hwang, S., Choi, C. H. and Lee, C. S., "Regioselective Surface Modification of Pdms Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20(4), 422-428(2012). https://doi.org/10.1007/s13233-012-0048-8
  23. Bauer, W. A. C., Fischlechner, M., Abell, C. and Huck, W. T. S., "Hydrophilic PDMS Microchannels for High-throughput Formation of Oil-in-water Microdroplets and Water-in-oil-in-water Double Emulsions," Lab Chip, 10(14), 1814-1819(2010). https://doi.org/10.1039/c004046k
  24. Hwang, S., Choi, C. H., Kim, H. C., Kim, I. H. and Lee, C. S., "In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions," Polym.(Korea), 36(2), 177-181(2012). https://doi.org/10.7317/pk.2012.36.2.177
  25. Harry, R. A., James, F. W. L. and Mark, E., Contemporary Polymer Chemistry. 3rd ed., Prentice Hall, Englewood Cliffs, NJ(2003).
  26. Karapanagiotis, I. and Gerberich, W. W., "Polymer Film Rupturing in Comparison with Leveling and Dewetting," Surf. Sci., 594(1-3), 192-202(2005). https://doi.org/10.1016/j.susc.2005.07.023
  27. Choi, C. H., Yi, H., Hwang, S., Weitz, D. A. and Lee, C. S., "Microfluidic Fabrication of Complex-shaped Microfibers by Liquid Template-aided Multiphase Microflow," Lab Chip, 11(8), 1477-1483(2011). https://doi.org/10.1039/c0lc00711k
  28. Kim, S. H., Abbaspourrad, A. and Weitz, D. A., "Amphiphilic Crescent-Moon-Shaped Microparticles Formed by Selective Adsorption of Colloids," J. Am. Chem. Soc., 133(14), 5516-5524(2011). https://doi.org/10.1021/ja200139w
  29. Choi, C. H., Jung, J. H. and Lee, C. S., "In situ Microfluidic Method for the Generation of Uniform PEG Microfiber," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(4), 470-474(2010).

Cited by

  1. Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1067
  2. Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.472
  3. Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26829-z
  4. 유리상 탄소입자의 직접 접촉충전에 의한 전기영동 현상연구 vol.54, pp.4, 2013, https://doi.org/10.9713/kcer.2016.54.4.568
  5. Spontaneous generation of emulsion droplets by autonomous fluid-pumping using the gas permeability of poly(dimethylsiloxane) (PDMS) vol.38, pp.2, 2013, https://doi.org/10.1080/01932691.2016.1154862