DOI QR코드

DOI QR Code

INFINITUDE OF MINIMALLY SUPPORTED TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS WITH LOW APPROXIMATION ORDERS

  • Received : 2013.05.15
  • Accepted : 2013.08.07
  • Published : 2013.09.30

Abstract

By analyzing one-parameter families of totally interpolating multiwavelet systems of minimal total length with low approximation orders, whose explicit formulas were obtained with the aid of well-known relations of filters, we demonstrate the infinitude of such systems.

Keywords

References

  1. Y. Choi and J. Jung. Approximation and balancing orders for totally interpo- lating biorthogonal multiwavelet systems, Bull. Korean Math. Soc. 48 (2011), 1157-1167. https://doi.org/10.4134/BKMS.2011.48.6.1157
  2. Y. Choi and J. Jung. Totally interpolating biorthogonal multiwavelet systems with approximation order, Linear Multilinear Algebra, 60 (2012), 697-724. https://doi.org/10.1080/03081087.2011.627563
  3. B. Han, S. Kwon, and X. Zhuang. Generalized interpolating refinable function vectors, J. Comput. Appl. Math. 227 (2009), 254-270. https://doi.org/10.1016/j.cam.2008.03.014
  4. R. A. Horn and C. R. Johnson. Topics in matrix analysis, Cambridge Univ. Press, Cambridge, UK, 1991.
  5. Q. Jiang. On the regularity of matrix refinable functions, SIAM J. Math. Anal. 29 (1998), 1157-1176. https://doi.org/10.1137/S003614109630817X
  6. F. Keinert. Wavelets and multiwavelets, CRC Press, 2003.
  7. K. Koch. Interpolating scaling vectors, Int. J.Wavelets Multiresolut. Inf. Process. 3 (2005), 1-29. https://doi.org/10.1142/S0219691305000713
  8. J. Lebrun and M. Vetterli. Balanced multiwavelets theory and design, IEEE Trans. Signal Process. 46 (1998), 1119-1125. https://doi.org/10.1109/78.668561
  9. J. Lebrun and M. Vetterli. High order balanced multiwavelets: theory, factoriza- tion, and design, IEEE Trans. Signal Process. 49 (2001), 1918-1930. https://doi.org/10.1109/78.942621
  10. G. Plonka. Approximation order provided by refinable function vectors, Constr. Approx. 13 (1997), 221-244. https://doi.org/10.1007/BF02678465
  11. G. Plonka and V. Strela. From wavelets to multiwavelets, Mathematical methods for curves and surface II (M. Dahlen, T. Lyche, and L. L. Schumaker, Eds.), Vanderbilt Univ. Press, Nashville, 1998, 375-399.
  12. I. W. Selesnick. Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Process. 47 (1999), 1615-1621. https://doi.org/10.1109/78.765131
  13. W. Sweldens and R. Piessens. Wavelet sampling techniques, Proc. Statistical Computing Section, 20-29, 1993.
  14. X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter. Design of prefilters for discrete multiwavelet transforms, IEEE Trans. Signal Process. 44 (1996), 25-35. https://doi.org/10.1109/78.482009
  15. X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter. Why and how pre- filtering for discrete multiwavelet transforms, Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. Vol. 1, 1578-1581, 1996.
  16. X. G. Xia and Z. Zhang. On sampling theorem, wavelets, and wavelet transforms, IEEE Trans. Signal Process. 41 (1993), 3524-3535. https://doi.org/10.1109/78.258090
  17. J. K. Zhang, T. N. Davidson, Z. Q. Luo, and K. M. Wong. Design of interpo- lating biorthogonal multiwavelet systems with compact support, Appl. Comput. Harmon. Anal. 11 (2001), 420-438. https://doi.org/10.1006/acha.2001.0361