DOI QR코드

DOI QR Code

Numerical analysis for supercavitating flows around axisymmetric cavitators

  • Kwack, Young Kyun (Department of Mechanical Design Engineering, Chungnam National University) ;
  • Ko, Sung Ho (Department of Mechanical Design Engineering, Chungnam National University)
  • 발행 : 2013.09.30

초록

Diffuse interface model for numerical analysis was used to compute supercavitating flows around various cavitators. The ambient pressures of 2 atm permitted cavitation studies in a range of cavitation number, ${\sigma}=0.1$ to 1.0 on selected conical and disk-headed cavitors. The computed results were compared with relation by Reichardt. Drag coefficient obtained from pressure forces acting on the cavitator also compared well with those obtained from analytical relations.

키워드

참고문헌

  1. Abgrall, R., 1996. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. Journal of Computational Physics, 125(1), pp.150-160. https://doi.org/10.1006/jcph.1996.0085
  2. Abgrall, R. and Saurel, R., 2003. Discrete equations for physical and numerical compressible multiphase mixtures. Journal of Computational Physics, 186(2), pp.361-396. https://doi.org/10.1016/S0021-9991(03)00011-1
  3. Abgrall, R. and Perrier, V., 2006. Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flow. SIAM Journal of Multiscale Modeling and Simulation, 5(1), pp.84-115. https://doi.org/10.1137/050623851
  4. Farhat, C. and Roux, F.X., 1991. A method for finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), pp.1205-1227. https://doi.org/10.1002/nme.1620320604
  5. Franc, J.P. and Michel, J.M., 2004. Fundamentals of cavitation. Springer.
  6. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R. and Zaleski, S., 1999. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 152(2), pp.423-456. https://doi.org/10.1006/jcph.1998.6168
  7. Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, pp.201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  8. Hirt, C.W., Amsden, A.A. and Cook, J.L., 1974. An arbitrary Lagrangian Eulerian computing method for all flow speeds. Journal of Computational Physics, 14(3), pp.227-253. https://doi.org/10.1016/0021-9991(74)90051-5
  9. Karni, S., 1994. Multicomponent flow calculations by a consistent primitive algorithm. Journal of Computational Physics, 112(1), pp.31-43. https://doi.org/10.1006/jcph.1994.1080
  10. Murrone, A. and Guillard, H., 2005. A five equation reduced model for compressible two phase flow problems. Journal of Computational Physics, 202(2), pp.664-698. https://doi.org/10.1016/j.jcp.2004.07.019
  11. Newman, J.N., 1977. Marine hydrodynamics. The MIT Press: Cambridge.
  12. Petitpas, F., Franquet, E., Saurel, R. and Le Metayer, O., 2007. A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks. Journal of Computational Physics, 225(2), pp.2214-2248. https://doi.org/10.1016/j.jcp.2007.03.014
  13. Plesset, M.S. and Shaffer, P.A., 1948. Cavity drag in two and three dimensions. Journal of Applied Physics, 19(10), pp.934-939. https://doi.org/10.1063/1.1697899
  14. Reichardt, H., 1946. The laws of cavitation bubbles at axially symmetric bodies in a flow. Ministry of Aircraft Production (Britain), Report and Translations No. 766.
  15. Saurel, R. and Abgrall, R., 1999. A multiphase Godunov method for compressible multifluid and multiphase flows. Journal of Computational Physics, 150, pp.425-467. https://doi.org/10.1006/jcph.1999.6187
  16. Saurel, R., Gavrilyuk, S. and Renaud, F., 2003. A multiphase model with internal degrees of freedom: application to shockbubble interaction. Journal of Fluid Mechanics, 495, pp.283-321. https://doi.org/10.1017/S002211200300630X
  17. Saurel, R., Franquet, E., Daniel, E. and Le Metayer, O., 2007. A relaxation-projection method for compressible flows. Part I. The numerical equation of state for the Euler equations. Journal of Computational Physics, 223(2), pp.822-845. https://doi.org/10.1016/j.jcp.2006.10.004
  18. Saurel, R., Petitpas, F. and Berry, R., 2009. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5), pp.1678-1712. https://doi.org/10.1016/j.jcp.2008.11.002
  19. Scheffer, D.R. and Zukas, J.A., 2000. Practical aspects of numerical simulation of dynamic events: material interfaces. International Journal of Impact Engineering, 24(8), pp.821-842. https://doi.org/10.1016/S0734-743X(00)00003-8
  20. Self, M.W. and Ripken, J.F., 1955. Steady-state cavity studies in a free-jet water tunnel. St. Anthony Falls Hydraulic Laboratory Report No. 47.
  21. Toro, E.F., Spruce, M. and Speares, W., 1994. Restoration of the contact surface in the HLL Riemann solver. Shock Waves, 4, pp.25-34. https://doi.org/10.1007/BF01414629
  22. Toro, E.F., 1997. Riemann solvers and numerical methods for fluids dynamics : a practical introduction. New York: Springer.
  23. Wood, A.B., 1930. A textbook of sound. London: Bell and Sons Ltd.

피인용 문헌

  1. Experimental and numerical research on cavitating flows around axisymmetric bodies vol.28, pp.11, 2014, https://doi.org/10.1007/s12206-014-1020-7