DOI QR코드

DOI QR Code

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type

2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석

  • Byun, Ook (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Jung, Da-Un (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Han, In-Hae (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Kim, Seong-Ryang (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Lee, Chang-Hee (Department of Prosthodontics, School of Dentistry, Chosun University)
  • 변욱 (조선대학교 치과대학 보철학교실) ;
  • 정다운 (조선대학교 치과대학 보철학교실) ;
  • 한인혜 (조선대학교 치과대학 보철학교실) ;
  • 김성량 (조선대학교 치과대학 보철학교실) ;
  • 이창희 (조선대학교 치과대학 보철학교실)
  • Received : 2013.08.03
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.

임플란트 고정체-지대주 결합구조체의 형태에 따른 교합부하의 반응이 다양하여 본 연구에서는 하중위치 및 결합구조체 접촉 비율에 따라 3단 계단형 결합구조체와 경사형에서 어떠한 차이가 있는 지를 3차원 유한요소분석을 시행하였다. 2종의 임플란트-지대주 결합 구조체에 연결된 상부 치관을 제작하여 각 치관에 설정된 하중위치에 200 N의 하중을 부여하였다. 임플란트 중심 부위에서 하중조건이 멀어질수록 피질골정에 가해지는 응력이 증가되기에 하중조건은 응력발생에 영향을 미치는 주요 요소이며 다음으로 결합구조형태에도 영향을 받았다. 또한 수직 하중에 비해 빗금 경사 하중이 부여된 경우 계단형은 경사형에 비해 유리한 응력 분포를 보였다. 그리고 지대주 결합구조체가 고정체의 내벽에 대해 접촉이 많아 질수록 골질에 대한 응력분산이 유리한 것으로 나타났다. 결론적으로 고정체 폭경에서 벗어난 빗김 수직 및 경사 하중은 결합구조체의 종류와 관계없이 피질골정에 응력을 집중시키므로 저작기능시 교합접촉면을 고정체의 폭경 내에 위치하도록 하는 것이 생체역학적으로 바람직 할 것으로 사료되었다.

Keywords

References

  1. Berglundh T, Lindhe J, Dimension of the periimplant mucosa: Biologic width revisited. J Clin Periodontol 1996;23:971-973. https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
  2. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-1424. https://doi.org/10.1902/jop.2000.71.9.1412
  3. Hermann JS, Cochran DS, Nummikoski PV, Buser D. Crestal bone changes around titanium implants: A radiographic evaluation of unloaded submerged and nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68:1117-1130. https://doi.org/10.1902/jop.1997.68.11.1117
  4. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A methodlogical study comparing linear radiographic versus histometric measurements. Int J Oral Maxillofac Implants 2001;16:475-485.
  5. King GN, Hermann JS, Schoolfield JD, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone levels in non-submerged dental implants: A radiographic study in the canine mandible. J Periodontol 2002;73:1111-1117. https://doi.org/10.1902/jop.2002.73.10.1111
  6. Geng JP, MA QS, Xu W, Tan KBC, Liu GR. Finite element analysis of thread-form configura-tions in a stepped screw implant. Journal of Oral Rehabilitation 2004;31:233-239. https://doi.org/10.1046/j.0305-182X.2003.01213.x
  7. Sutpideler M, Eckert SE, Zobitz M, An KN. Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. Int J Oral Maxillofac Implants 2004;19:819-825.
  8. Chu CM, Huang HL, Hsu JT, Fuh LJ. Influences of internal tapered abutment designs on bone stresses around a dental implant: three-dimensional finite element method with statistical evaluation. J Periodontol 2011;83:111-118.
  9. Khurana P, Sharma A, Sodhi KK. Influence of fine threads and platform-switching on crestal bone stress around implant-a three dimensional finite element analysis. J Oral Implantol 2011 Sep 9.
  10. Balik A, Ozdemir Karatas M, Keskin H. Effects of different abutment connection designs on the force distribution around commercially avilable dental implants: A 3-D finite element analysis. J Oral Implantol 2011; Special Issue 1:491-496.
  11. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling posterstorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26:9-17.
  12. Maeda Y, Miura J, Taki I, Sogo, M. Biomechanical analysis on platform switching: is there any biomechanical rationale? Clin Oral Implants Res 2007;18:581-584. https://doi.org/10.1111/j.1600-0501.2007.01398.x
  13. Pessoa RS, Geraldo Vaz L, Marcantonio E, Sloten JV, Duyck J, Jaecques SVN. Bio mechanical evaluation of platform switching in different implant protocol: Computed Tomography-Based Three-Dimensional Finite Element Analysis. Int J Oral Maxillofac Implants 2010;25:911-919.
  14. Perssoa RS, Murau L. Marcantonio E Jr, Influence of implant connection type on the biomechanical environment of immediately placed implant: CTbased nonlinear, three dimensional finite element analysis. Clin Implant Dent Relat Res 2010;12:219-234.
  15. Rieger, MR. Adams, WK Kinzel, GL. Finite element surver of eleven endosseous implants. J Prosthet Dent 1990;63:457-465. https://doi.org/10.1016/0022-3913(90)90238-8
  16. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-526.
  17. Weinstein AM, Klawitter JJ, Anand SC. Schuessler R. Stress analysis of porous rooted dental implants J Dent Res 1976;55:772-777. https://doi.org/10.1177/00220345760550051001
  18. Geng JP, Tan KBC, Liu GR. Applications of finite element analysis in implant dentistry, a review of literatures. J Prosthet Dent 2001;85:585-598. https://doi.org/10.1067/mpr.2001.115251
  19. Chun HJ, Cheong JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation, 2002;29:565-574. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  20. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. Journal of Biomechanics 2003;36:1247-1258. https://doi.org/10.1016/S0021-9290(03)00164-7
  21. Bidez MW, Misch CE. Force transfer in implant dentistry: basic concepts and principles, J Oral Implantol 1992;18:264-274.
  22. Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Advance Dent Res 1999;13:99-119. https://doi.org/10.1177/08959374990130012301
  23. Lum LB. A biomechanical rationale for the use of short implants. Journal of Oral implantol 1991;17:126-131.
  24. Clift SE, Fisher J, Watson CJ. Finite element stress and strain analysis of the bone surrounding a dental implant: effect of variations in bone modulus. Proc Inst Mech Eng [H] 1992;206:233-241.
  25. Mericske-Stern R, Assal P, Mericske E, Burgin W. Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants 1995;10:345-353.
  26. Duyck J, Ronald HJ, van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reaction around osseointegrated implants: an animal experimental study. Clinical Oral Implants research 2001;12:207-218. https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  27. Quirynen M, Naert I, van Steenberge D. Fixed design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:103-111.
  28. Balshi TJ. An analysis and management of fractured implants, A clinical report. Int J Oral Mxillofacial Implants 1996;11:660-666.
  29. Lobbezoo F, van der Zaag J, Naeije M. Bruxism: its multiple causes and its effects on dental implants -an updated review. J Oral Rehabil 2006;33:293-300. https://doi.org/10.1111/j.1365-2842.2006.01609.x
  30. Yokoyama S, Wakabayashi N, Shiota M, Ohyama T. The influence of implant location and length on stress distribution for three-unit implant -supported posterior cantilever fixed partial dentures. J Prosthet Dent 2004;91:234-240. https://doi.org/10.1016/j.prosdent.2003.12.017
  31. Hansson S. The implant neck: Smooth or provided with retention elements, A biomechanical approach. Clin Oral Imolant Res 1999;5:394-405.
  32. Gardner DM. Platform switching as a means to achieving implant esthetics. New York State Dental Journal 2005;71:34-37.
  33. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-111.
  34. Spivey JD, Kong W, Fotus PG, et al. Stress distribution at the bone to implant interface: A 3-D finite element analyses(abstract 106). J Dent Res 1993;72:117.
  35. Clelland NL, Lee JK, Bimbenet OC, Gilat A. Use of an axisymmetric finite element method to compare maxillary bone variables for a loaded implant. J Prosthodont 1993;2:183-189. https://doi.org/10.1111/j.1532-849X.1993.tb00405.x
  36. Barbier L, Vander S, Krzesinski G, Schepers E, van der Perre G. Finite element anlysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabi 1998;25:847-858. https://doi.org/10.1046/j.1365-2842.1998.00318.x