DOI QR코드

DOI QR Code

THE ANALYSIS OF SEXUALLY TRANSMITTED DISEASES WITH DEMOGRAPHICS ON SCALE-FREE NETWORK

  • Liu, Maoxing (Department of Mathematics, North University of China) ;
  • Zhang, Yunli (Department of Mathematics, North University of China)
  • Received : 2012.09.05
  • Accepted : 2012.11.04
  • Published : 2013.05.30

Abstract

In this paper we consider a model with demographics for sexually transmitted diseases (STDs) spread on scale-free networks. We derive the epidemic threshold, which is depend on the birth rate, the natural death rate and other parameters. The absence of a threshold in infinite scale-free network is proved. For a hard cut off scale-free network, we also analyze the stability of disease-free equilibrium and the persistence of STDs infection. Two immunization schemes, proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy is more effective on scale-free networks.

Keywords

References

  1. W. O. Kermack, A. G. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc. A 115 (1927), 700-721.
  2. F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Aberg, The web of human sexual contacts, Nature 411 (2001), 907-908. https://doi.org/10.1038/35082140
  3. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80 (2008), 1275-1335. https://doi.org/10.1103/RevModPhys.80.1275
  4. F. Liljeros, C. R. Edling, et al., Social networks (communication arising): Sexual contacts and epidemic thresholds, Nature 423 (2003), 605-606. https://doi.org/10.1038/423605a
  5. A. -L. Barabasi and R. Albert, Emergence of scaling in random networks, Science 286 (1999), 509-512. https://doi.org/10.1126/science.286.5439.509
  6. A. -L. Barabasi, R. Albert, and H. Jeong, Mean-filed theory for scale-free random networks, Physica A 272 (1999), 173-187. https://doi.org/10.1016/S0378-4371(99)00291-5
  7. B. A. Huberman and L. A. Adamic, Growth dynamics of the World-Wide Web, Nature 401 (1999), 131-131.
  8. A. -L. Barabasi, R. Albert, and H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A 281 (2000), 69-77. https://doi.org/10.1016/S0378-4371(00)00018-2
  9. R. Albert and A. -L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002), 47-97. https://doi.org/10.1103/RevModPhys.74.47
  10. A. Schneeberger, C. H. Mercer, et al., Scale-free networks and sexually transmitted diseases: A description of observed patterns of sexual contacts in Britain and Zimbabwe, Sex. Transm. Dis. 31 (2004), 380-387. https://doi.org/10.1097/00007435-200406000-00012
  11. M. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003), 167-256. https://doi.org/10.1137/S003614450342480
  12. W. J. Reed, A stochastic model for the spread of a sexually transmitted disease which results in a scale-free network, Math. Biosci. 201 (2006), 3-14. https://doi.org/10.1016/j.mbs.2005.12.016
  13. X. Fu, M. Small, D. M. Walker, H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E Stat. Nonl. Soft Matter Phys. 77 (2008), 036113. https://doi.org/10.1103/PhysRevE.77.036113
  14. R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001), 3200-3203. https://doi.org/10.1103/PhysRevLett.86.3200
  15. R. M. May, A. L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E 64 (2001), 066112. https://doi.org/10.1103/PhysRevE.64.066112
  16. A. Lajmanovich, J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28 (1976), 221-236. https://doi.org/10.1016/0025-5564(76)90125-5
  17. N. Sugimine, K. Aihara, Stability of an equilibrium state in a multiinfectious-type SIS model on a truncated network, Artific. Life Robotics 11 (2007), 157-161. https://doi.org/10.1007/s10015-007-0421-4
  18. R. Yang, B. H. Wang, J. Ren, W. J. Bai, Z. W. Shi, W. Xu and T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A 364 (2007), 189-193. https://doi.org/10.1016/j.physleta.2006.12.021
  19. J. Z. Liu, Y. F. Tang, Z. R. Yang, The spreading of disease with birth and death networks, J. Stat. Mech. P08008 (2004).
  20. R. Pastor-Satorras, A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys. Rev. E 65 (2002), 035108. https://doi.org/10.1103/PhysRevE.65.035108
  21. R. Pastor-Satorras, A. Vespignani, Immunization of complex networks, Phys. Rev. E 65 (2002), 036104. https://doi.org/10.1103/PhysRevE.65.036104
  22. W. P. Guo, X. Li and X. F. Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, Physica A 380 (2007), 684-690. https://doi.org/10.1016/j.physa.2007.03.007
  23. J. Lou, T. Ruggeri, The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network, J. Math. Anal. Appl. 365 (2010), 210-219. https://doi.org/10.1016/j.jmaa.2009.10.044
  24. M. X. Liu and J. Ruan, Modelling the spread of sexually transmitted diseases on scale-free networks, Chin. Phys. B 18 (2009), 2115-2120. https://doi.org/10.1088/1674-1056/18/6/002