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THE ANALYSIS OF SEXUALLY TRANSMITTED DISEASES

WITH DEMOGRAPHICS ON SCALE-FREE NETWORK†

MAOXING LIU∗ AND YUNLI ZHANG

Abstract. In this paper we consider a model with demographics for sexu-
ally transmitted diseases (STDs) spread on scale-free networks. We derive

the epidemic threshold, which is depend on the birth rate, the natural
death rate and other parameters. The absence of a threshold in infinite
scale-free network is proved. For a hard cut off scale-free network, we also
analyze the stability of disease-free equilibrium and the persistence of STDs

infection. Two immunization schemes, proportional scheme and targeted
vaccination, are studied and compared. We find that targeted strategy is
more effective on scale-free networks.
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1. Introduction

The dynamical behaviors of epidemic diseases have been studied for a long
time, SIS and SIR are the two important and fundamental epidemic models [1].
Epidemic spreading can be thought of as occurring on complex networks where
the nodes of the network represent individuals and the links represent various
interactions among those individuals. In general, networks can be characterized
by the connectivity of their nodes. The degree k of a node is defined as the
number of links connected to the node. The degree distribution of a network
P (k) is defined as the probability of a randomly chosen node to have a degree k.
Many networks such as social networks, the Internet and the World Wide Web
(WWW) have been found to be scale-free networks [5, 6, 7, 8, 9], meaning that
the degree distribution follows a power-law P (k) ∼ k−2−γ , with 0 < γ ≤ 1.
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Models of epidemic spreading on networks have been studied extensively in
recent years [3]. For instance, a very important example of scale-free networks is
found in the web of human sexual contacts [4]. Data from national sex surveys
[4, 10] provide quantitative information on the number of sexual partners, i.e.,
the degree k, of an individual. The respondents are asked to provide information
on sexual attitudes such as the number of sex partners they have had in the last
12 months or in their entire life. It turns out that the number of heterosex-
ual partners reported from different populations is well described by power-law
distribution [2, 11].

Since STDs can spread through scale-free networks, many mathematical mod-
els on this topic have been studied [12, 16, 23, 24]. R. Pastor-Satorras et al.
stated that, in infinite scale-free networks, epidemic processes do not possess
an epidemic threshold [14]. The absence of an intrinsic epidemic threshold has
been found in both the susceptible-infected-susceptible (SIS) model [14] and
the susceptible-infected-removed (SIR) model in infinite scale-free networks [15].
The above results normally only prove the existence of epidemic equilibrium,
but from a mathematical aspect, such SI1I2RS models on a bounded network
can be viewed as multiple SIRS models [16, 17]. In this way, the stabilities of
equilibria also can be proved [17]. Because of some infectious disease with the
longer spreading time, demographics such as birth, death etc, should be consid-
ered in the epidemic models. Liu consider the spread of epidemic diseases with
birth and death on networks [19].

Based on the above results, in this paper, we consider a population with
two types of susceptible individuals and two types of infected individuals: One
proportion of susceptible individuals has weakly self-protection awareness, so the
rate of being infected is bigger than other susceptible individuals; One proportion
of infected individuals who potentially has a small infection rate since they use
such as condoms to protect their partners (for most STDs, although a condom
can reduce the chances of the transmission of these virus or bacterium if it covers
the affected areas, it is not entirely effective. A condom may not cover all of
the sores or rashes in the affected areas, and direct skin contact may give rise
to transmission [18]); The other proportion who do not have any protection (we
say they have high-risk sexual behaviors) and potentially have a large infection
rate.

Thus we get an S1S2I1I2RS STDs model on a scale-free network. Our
model relies on the following rough description of individuals in the popula-
tion. Namely, each node of the graph represents an individual and each link is
a connection along which the STDs can spread. We suppose each susceptible
(healthy) node is infected with rate β1 or β2 if it is connected to one or more
infected nodes. Infected nodes are cured with rate η and recovered nodes again
become susceptible with rate δ. We derive that epidemic processes of our model
do not possess an epidemic threshold, like in model SIS and SIR [14, 15], in
infinite scale-free network. Since realistic systems are actually made up by a
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finite number of individuals, this finite population introduces a maximum con-
nectivity, depending on the size of the network [20]. In this paper, we also
discuss the stability of equilibria and the permanent of infection on a bounded
hard-cutoff scale-free network. Since a finite network has the effect of restoring
a boundary in the connectivity fluctuations, in this way it produces an effective
non-zero threshold [23, 24]. By applying two immunization strategies (propor-
tional immunization, targeted immunization) to the STDs model, it is shown
that the second strategy has an overwhelming advantage compare with the first
one. Finally, we prove the benefit that divides the susceptible individuals into
two subgroup according to sexual values, and divides the infected individuals
into two subgroup according to condom using or not. For a given immuniza-
tion rate, we can get the suitable condom using rate to control STDs spread on
networks.

The organized of this paper is as follows. In the next section, we will describe
the epidemic model on networks with birth and death. Section 3.1 is devoted to
the threshold for the STDs spread on scale-free network. We analyze the stability
of disease-free equilibrium and the persistence of STDs infection in section 3.2.
In Section 4, we discuss and compare the effect of two immunization strategies.
The paper ends with a conclusion and discussion in Section 5.

2. A multiple SIRS model

Let S1k, S2k, I1k, I2k and Rk represent the relative densities of nodes of
degree k. They also denote the densities of the susceptible with weakly self-
protection awareness, the susceptible with strongly self-protection awareness,
the infectious with low infectivity, the infectious with high infectivity and the
recovered respectively. So that the total population size is

N(t) = S1k(t) + S2k(t) + I1k(t) + I2k(t) +Rk(t). (1)

On the network each site of N is empty or occupied by only one individual.
We give each site a number: 0, 1, 2, 3, 4 or 5. Alternatively we can interpret
the six states as 0 : vacant, 1 : a healthy individual with weakly self-protection
occupation, 2 : a healthy individual with strongly self-protection occupation,
3 : an infected individual with low infection rate occupation, 4 : an infected
individual with high infection rate occupation, 5 : a recover individual occupa-
tion. The state of the system at time t can be described by a set of numbers
0, 1, 2, 3, 4, 5. That means if the system is in the state A and the site x ∈ N ,
then At(x) ∈ {0, 1, 2, 3, 4, 5}. Each site can change its state with a certain rate.
A empty site can give new individual to healthy with strongly self-protection
at the rate b (about the new individual the protection from the family). The
state-transition rules of the contact process are schematically shown in Fig. 1.

Then we have the following dynamics model:
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Figure 1. The state-transition rules of the multiple SIRS model.



dS1k(t)
dt = qδRk(t)− kS1k(t)Θ(t)− (ξ + µ)S1k(t),

dS2k(t)
dt = b[1− S1k(t)− S2k(t)− I1k(t)− I2k(t)−Rk(t)]

+(1− q)δRk(t) + ξS1k(t)− kεS2k(t)Θ(t)− µS2k(t),
dI1k(t)
dt = pk[S1k(t) + εS2k(t)]Θ(t)− (η + µ)I1k(t),

dI2k(t)
dt = (1− p)k[S1k(t) + εS2k(t)]Θ(t)− (η + µ)I2k(t),

dRk(t)
dt = ηI1k(t) + ηI2k(t)− (δ + µ)Rk(t).

(2)

where Θ(t) is defined as

Θ(t) =
1

⟨k⟩

∞∑
k=1

ψ(k)P (k)[β1I1k(t) + β2I2k(t)]. (3)

In this paper, we suppose that the connectivity of nodes on this network is
uncorrelated. In the case of an uncorrelated random network, the probability
that a link points to a node of connectivity s is independent of the connectivity k
of the node from which the link is emanating. The meanings for each parameter
or item of system (2) are:

Infected nodes are cured with rate η and recovered nodes again become suscep-
tible with rate δ. Parameter ε represents the rate of the lost of self-protection
awareness for the susceptible with strongly self-protection awareness. Param-
eter ξ represents the transfer rate from the susceptible who has weakly self-
protection awareness to the one with strongly self-protection awareness, based
on the spreading of the information about the sexually transmitted diseases.
Parameter µ represents the rate of natural death.

In the first and second equation, kS1k(t)Θ(t) and kεS2k(t)Θ(t) represent the
lost of the weakly self-protection and the strongly self-protection awareness sus-
ceptible individuals respectively because of infection, which is proportional to
the connectivity k, the densities of the weakly self-protection healthy nodes S1k

and the strongly self-protection awareness healthy nodes S2k respectively, in-

fected nodes I1k and I2k. Factors ψ(k)P (k)
⟨k⟩ in Θ(t) represents the expectation

that any given link emanating from a node of connectivity k points to an infected
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node. Parameters β1 and β2 in Θ(t) are the STDs transmission rates for each
sexual behavior of subgroups I1k and I2k respectively.

In the third and fourth equations, parameter p is the rate of the usage of
condom. Suppose that after being infected by STDs, there are p proportion
infected individuals begin to control their behavior, such as using condom to
protect their partners, but the other 1− p proportion individuals still keep their
high risk behavior. Here qδ means the rate from immunization-lost for recovered
individuals to the unawareness of self-protection susceptible compartment, but
the other (1 − q)δ proportion immunization-lost for recovered individuals enter
into the awareness of strongly self-protection susceptible compartment. And
according to their biological meanings, we have β2 > β1 > 0, δ > 0, ξ > 0,
ε > 0, µ > 0, η > 0 and 0 ≤ p, q ≤ 1.

Now we give some explanations to symbols in Θ(t). Here ⟨k⟩ is the average
degree of the network, which can be understood as the first moment of degree
k: ⟨k⟩ =

∑
k kP (k). P (k) is the degree distribution, i.e., the probability that a

randomly chosen node within the network has degree k. Function ψ(k) denotes
the infectivity of a node with degree k. In [13], the authors suppose that the
infectivity ψ(k) of each node (each nodes potential infection-activity) with degree
k is ψ(k) = αk, where α is a positive constant, 0 < α ≤ 1. Then they get the
epidemic threshold λc = 0 for sufficiently large networks. In [18], the authors
suppose the infectivity ψ(k) of a node with degree k is a constant A, which
means every node has the same infectivity, no matter its degree. In this case,
λc = 1

A is a positive threshold which is independent of the topology. But for
STDs spread, different kind of nodes, such as a sex workers and a normal woman,
they of course have different numbers of sexual contacts in one time step. For
this reason, we think that ψ(k) = αk is much more suitable than a constant A
one for each node of degree k.

Since the probability that a node of connectivity k is connected to an isolated
node is zero, so we only consider the situation that k ≥ 1 in our paper. So
system (2), combined with (3) and the initial conditions S1k(0) = S0

1k, I1k(0) =

I01k, I2k(0) = I02k, Rk(0) = R0
k, and S2k(0) = b

b+µ − S0
1k − I01k − I02k − R0

k,

completely define the S1S2I1I2RS model on an uncorrelated network with degree
distribution P (k).

3. Some results

For each k, adding five equations in (2) gives

dNk(t)

dt
= b− (b+ µ)Nk(t).

Hence lim sup
t→∞

(S1k + S2k + I1k + I2k + Rk) ≤ b
b+µ . Therefore, omega limit sets

of system (2) are contained in the following bounded region in the non-negative
cone of R5κc :

C = {(S11, S21, I11, I21, R1, . . . , S1κc , S2κc , I1κc , I2κc , Rκc), S1k ≥ 0, S2k ≥ 0,
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I1k ≥ 0, I2k ≥ 0, Rk ≥ 0, S1k + S2k + I1k + I2k +Rk ≤ b/(b+ µ)} ,
and κc is the maximum number of contact each individual. It can be verified
that region C is positively invariant. Consequently, the dynamics of the model
would be considered in C.

3.1. The threshold R0 on infinite scale-free network. In this subsection,
we discuss the existence of the epidemic equilibrium solution of system (2). We
have the following theorem.

Theorem 3.1. Define

R0 =
αbε[pβ1 + (1− p)β2]

(η + µ)(b+ µ)

⟨k2⟩
⟨k⟩

, (4)

there always exists a disease-free equilibrium solution E0 = (0, b
b+µ , 0, 0, 0) for

system (2), and when R0 > 1 there exists one and only one epidemic equilibrium.

Proof. Since S1k, S2k, I1k, I2k and Rk represent the relative densities of nodes
of degree k and we consider the death rate and the birth rate of each node, so
these variables obey that

S1k(t) + S2k(t) + I1k(t) + I2k(t) +Rk(t) =
b

b+ µ
. (5)

To get the epidemic solution , we need to impose the right side of system (2) to
be zero. Then any equilibrium (S1k(∞), S2k(∞), I1k(∞), I2k(∞), Rk(∞)) should
satisfy

I2k(∞) =
(1− p)kεbΘ(∞)[ξ + µ+ kΘ(∞)](δ + µ)

△
, (6)

where △ = (b+ µ)(δ + µ)(η + µ)(ξ + µ) + (b+ µ)[ε(δ + η + µ)][kΘ(∞)]2 + (b+
µ)[(η + µ)(δ + µ) + ε(ξ + µ)(η + δ + µ)− qηδ(1− ε)]kΘ(∞), and

I1k(∞) =
p

1− p
I2k(∞), (7)

Rk(∞) =
η

δ + µ
[I1k(∞) + I2k(∞)], (8)

S1k(∞) =
qδ

ξ + µ+ kΘ(∞)
Rk(∞), (9)

S2k(∞) =
b

b+ µ
− S1k(∞)− I1k(∞)− I2k(∞)−Rk(∞). (10)

For simplicity, we omit the symbol ∞ in the following. Substitute (6) and (7)
in (3), we obtain a self-consistency equation as follows:

Θ = f1(Θ)f2(Θ) ≡ f(Θ), (11)

where f1(Θ) = 1
⟨k⟩

∞∑
k=1

αk2P (k)pβ1+(1−p)β2

1−p , f2(Θ) = (1−p)bεΘ(ξ+µ+kΘ)(δ+µ)
g(Θ) and

g(Θ) = (b+ µ)(δ + µ)(η + µ)(ξ + µ) + (b+ µ)[ε(δ + η + µ)](kΘ)2 + [(η + µ)(δ +
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µ) + ε(ξ + µ)(η + µ+ δ)− qηδ(1− ε)](b+ µ)kΘ. Obviously Θ = 0 is a solution
of (11), i.e., f(0) = 0. So if a non-trivial solution exists, it should satisfy

df(Θ)

dΘ
|Θ=0 > 1,

that is,

αbε[pβ1 + (1− p)β2]

(η + µ)(b+ µ)

⟨k2⟩
⟨k⟩

> 1,

which yields the critical epidemic threshold R0 given in (4). So when R0 > 1, one
and only one epidemic equilibrium solution of system (2) exists. This finishes
the proof. �

Clearly, for an infinite scale-free networks (in which situation ⟨k2⟩ → ∞), the
epidemic processes of our model do not possess an epidemic threshold, below
which diseases cannot produce a major epidemic outbreak, like the results of
standard SIS model and SIR model [14, 15].

3.2. The stability and the persistence. Real systems are actually made up
by a finite number of individuals. This finite population introduces a maximum
connectivity kc . In this section, we will discuss the stability of equilibria for a
hard cutoff scale-free network [20]. First we recall a theorem by Lajmanovich
and York [16] that will be useful as a lemma in the following.

Lemma3.2 ( Lajmanovich and York ). Consider the system

dy

dt
= Ay +N(y), (12)

where A is an n × n matrix and N(y) is continuously differentiable in a region
D ⊂ Rn. Assume
1. the compact convex set C ⊂ D is positively invariant with respect to the sys-
tem (12), and 0 ∈ C;
2. lim

y→0
∥N(y)∥/∥y∥ = 0;

3. there exist r > 0 and a (real) eigenvector ω of AT such that ω · y ≥ r∥y∥ for
all y ∈ C;
4. ω ·N(y) ≤ 0 for all y ∈ C;
5. y = 0 is the largest positively invariant set [for (12)] contained in H = y ∈
C | (ω ·N(y)) = 0. Then either y = 0 is globally asymptotically stable in C, or
for any y0 ∈ C−{0} the solution ϕ(t, y0) of (12) satisfies lim inf

t→∞
∥ϕ(t, y0)∥ ≥ m,

where m > 0, independent of y0. Moreover, there exists a constant solution of
(12), y = k, k ∈ C − {0}.

About the stability of the disease-free equilibrium we have the following the-
orem.
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Theorem 3.2. If R0 < 1, the disease-free equilibrium solution is globally asymp-
totically stable; If R0 > 1, one and only one epidemic equilibrium solution of
system (2) exists, and system (2) is permanent of infection, i.e., there exists an
ε > 0, such that

lim
t→∞

inf{I1k(t), I2k(t)}κc

k=1 > ε,

for any solution of (2) with S1k(0) > 0, S2k(0) > 0, I1k(0) > 0 (or I2k > 0 or
both hold) and Rk(0) ≥ 0.

Proof. From (5) we know that system (2) can be rewritten as

dS1k(t)
dt = qδRk(t)− kS1k(t)Θ(t)− (ξ + µ)S1k(t),

dI1k(t)
dt = pk[S1k(t)Θ(t) + ε( b

b+µ − S1k(t)− I1k(t)− I2k(t)−Rk(t))

Θ(t)]− (η + µ)I1k(t),
dI2k(t)
dt = (1− p)k[S1k(t)Θ(t) + ε( b

b+µ − S1k(t)− I1k(t)− I2k(t)

−Rk(t))Θ(t)]− (η + µ)I2k(t),
dRk(t)
dt = ηI1k(t) + ηI2k(t)− (δ + µ)Rk(t).

(13)

In the following, we discuss the dynamic of (13) in the subspace

C1 = {(S11, I11, I21, R1, . . . , S1κc , I1κc , I2κc , Rκc),

S1k ≥ 0, I1k ≥ 0, I2k ≥ 0, Rk ≥ 0, S1k + I1k + I2k +Rk ≤ b/(b+ µ)}.

For simplicity, let sP (s)
⟨k⟩ ≡ qs. The Jacobian matrix of the disease-free equilib-

rium of system (13) which is a 4κc × 4κc matrix can be written as follows:

J =

 A · · · B
...

. . .
...

C · · · D

 ,

where

A =


−(ξ + µ) −S11αβ1q1 −S11αβ2q1 qδ

0 a22 a23 0
0 a32 a33 0
0 η η −(δ + µ)

 ,

where a22 = pαβ1q1[(1− ε)S11(t)+
bε
b+µ ]− (η+µ), a23 = pαβ2q1[(1− ε)S11(t)+

bε
b+µ ], a32 = α(1−p)β1q1[(1− ε)S11(t)+

bε
b+µ ], a33 = α(1−p)β2q1[(1− ε)S11(t)+

bε
b+µ ]− (η + µ), and

B =


0 −S11αqκcβ1 −S11αqκcβ2 0
0 b22 b23 0
0 b32 b33 0
0 0 0 0

 ,
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where b22 = pα[(1 − ε)S11 + bε
b+µ

]qκcβ1, b23 = pα[(1 − ε)S11 + bε
b+µ

]qκcβ2, b32 = (1 −
p)αqκcβ1[(1− ε)S11 + bε

b+µ
], b33 = (1− p)αqκcβ2[(1− ε)S11 + bε

b+µ
], and

C =


0 −κcS1κcαqκcβ1 −κcS1κcαqκcβ2 0
0 c22 c23 0
0 c32 c33 0
0 0 0 0

 ,

where c22 = κcp[(1 − ε)S1κc + bε
b+µ

]αq1β1, c23 = κcp[(1 − ε)S1κc + bε
b+µ

]αq1β2, c32 =

κc(1− p)αq1β1[(1− ε)S1κc + bε
b+µ

], c33 = κc(1− p)αq1β2[(1− ε)S1κc + bε
b+µ

], and

D =


−(ξ + µ) −κcS1κcαqκcβ1 −κcS1κcαqκcβ2 qδ

0 d22 d23 0
0 d32 d33 0
0 η η −(δ + µ)

 ,

where d22 = pκcαβ1qκc [(1− ε)S1κc + bε
b+µ

]− (η + µ), d23 = κcp[(1− ε)S1κc + bε
b+µ

]αqκcβ2,

d32 = κc(1−p)[(1−ε)S1κc +
bε

b+µ
]αqκcβ1, d33 = (1−p)κcαβ2qκc [(1−ε)S1κc +

bε
b+µ

]− (η+µ).

Using mathematical induction method we can calculate that, the polynomial
equation of the disease-free equilibrium is g1 · g2 = 0, where

g1 = (λ+ ξ + µ)κc(λ+ δ + µ)κc(λ+ η + µ)2κc−1,

g2 = λ+ η + µ− α[pβ1 + (1− p)β2] · {
12P (1)

⟨k⟩
[(1− ε)S11 +

bε

b+ µ
]

+
22P (2)

⟨k⟩
[(1− ε)S12 +

bε

b+ µ
] + · · ·+ κ2cP (κc)

⟨k⟩
[(1− ε)S1κc +

bε

b+ µ
]}.

So there exists a unique positive eigenvalue λ of J if and only if R0 > 1, un-
der which, the unique epidemic equilibrium exists. Otherwise all real-valued
eigenvalues of J are negative. According to the Perron-Frobenius theorem, this
implies that the maximal of the real parts of all eigenvalues of J is positive if
and only if R0 > 1. From Lemma 3.2 we finish the proof of this theorem. �

4. Immunization strategies

Vaccination is very helpful in controlling vaccine-preventable disease [14, 21].
In this section we discuss system (2) on a scale-free network with two immuniza-
tion schemes: the proportional immunization and the targeted immunization.

4.1. Proportional immunization. In this case, for fixed spreading rates β1,
β2, let γ be the immunization rate, 0 < γ < 1. At the mean-filed level, the
presence of proportional immunity will effectively reduce the spreading rate.
Thus we can approximatively use β1(1 − γ) to substitute β1 and use β2(1 − γ)
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to substitute β2, then system (2) becomes

dS1k(t)
dt

= qδRk(t)− k(1− γ)S1k(t)Θ(t)− (ξ + µ)S1k(t),
dS2k(t)

dt
= b[1− S1k(t)− S2k(t)− I1k(t)− I2k(t)−Rk(t)] + (1− q)δRk(t)
+ξS1k(t)− k(1− γ)εS2k(t)Θ(t)− µS2k(t),

dI1k(t)
dt

= p(1− γ)k[S1k(t) + εS2k(t)]Θ(t)− (η + µ)I1k(t),
dI2k(t)

dt
= (1− p)(1− γ)k[S1k(t) + εS2k(t)]Θ(t)− (η + µ)I2k(t),

dRk(t)
dt

= ηI1k(t) + ηI2k(t)− (δ + µ)Rk(t).

(14)

Using the method in subsection 3.1, we can get that

I2k(∞) =
kεb(1− p)(1− γ)Θ(∞)(µ+ δ)[ξ + µ+ k(1− γ)Θ(∞)]

△1
,

I1k(∞) =
p

1− p
I2k(∞),

Rk(∞) =
η

δ + µ
[I1k(∞) + I2k(∞)],

S1k(∞) =
qδ

ξ + µ+ k(1− γ)Θ(∞)
Rk(∞),

S2k(∞) =
b

b+ u
− S1k(∞)− I1k(∞)− I2k(∞)−Rk(∞),

where △1 = (b + µ)(η + µ)(δ + µ)(ξ + µ) + k(b + µ)(1 − γ)Θ(∞)[(η + µ)(δ +
µ) − (1 − ε)qδη + ε(ξ + µ)(δ + µ + η)] + (b + µ)[ε(µ + δ + η)][k(1 − γ)Θ(∞)]2,

and Θ = f̄1(Θ)f̄2(Θ) ≡ f̄(Θ), f̄1(Θ) = 1
⟨k⟩

∞∑
k=1

αkP (k)[pβ1+(1−p)β2]
1−p , f̄2(Θ) =

kεb(1−p)(1−γ)(µ+δ)Θ[ξ+µ+k(1−γ)Θ]
ḡ(Θ) , where ḡ(Θ) = (b + µ)(η + µ)(δ + µ)(ξ + µ) +

(b + µ)[ε(µ + δ + η)][k(1 − γ)Θ]2 + (b + µ)[(η + µ)(δ + µ) − (1 − ε)qδη + ε(ξ +
µ)(δ+µ+η)]k(1−γ)Θ. By arguments similar to those in Section 3, the epidemic

threshold R̂0 is determined by the following inequality:

df̄(Θ)

dΘ
|Θ=0> 1. (15)

Therefore, it can be shown that

R̂0 =
αεb(1− γ)[pβ1 + (1− p)β2]

(η + µ)(b+ µ)

⟨k2⟩
⟨k⟩

,

that is,

R̂0 = (1− γ)R0. (16)

Note that in (16), define

γc = 1− 1

R0
= 1− 1

Π
· ⟨k⟩
⟨k2⟩

,

where

Π =
αbε[pβ1 + (1− p)β2]

(b+ µ)(η + µ)
.
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From the above analysis, we can see when γ > γc (we have R̂0 < 1), then the
epidemic cannot spread in the network. When γ = 0, i.e., if no immunization
were done, then R̂0 = R0 > 1; when 0 < γ < γc, i.e., 1 < R̂0 < R0, that is, the
immunization scheme is effective, but not so effective to control the spread of
STDs on networks.

4.2. Targeted immunization. While proportional immunization schemes are
effective, there may be more efficient schemes due to the heterogeneous nature
of scale-free networks: they are robust to random attacks, but fragile to selective
attacks. Accordingly, we can devise a targeted immunization scheme [22]. First,
we introduce an upper threshold kt, and all nodes with connectivity k > kt are
immunized. So the immunization rate γk can be defined as

γk =

 1, k > kt,
c, k = kt,
0, k < kt.

where 0 < c ≤ 1, and
∑
k γkP (k) = γ̄ , where γ̄ is the average immunization

rate. Then the epidemic dynamic model is

dS1k(t)
dt

= qδRk(t)− k(1− γk)S1k(t)Θ(t)− (ξ + µ)S1k(t),
dS2k(t)

dt
= b[1− S1k(t)− S2k(t)− I1k(t)− I2k(t)−Rk(t)] + (1− q)δRk(t)
+ξS1k(t)− k(1− γk)εS2k(t)Θ(t)− µS2k(t),

dI1k(t)
dt

= p(1− γk)k[S1k(t) + εS2k(t)]Θ(t)− (η + µ)I1k(t),
dI2k(t)

dt
= (1− p)(1− γk)k[S1k(t) + εS2k(t)]Θ(t)− (η + µ)I2k(t),

dRk(t)
dt

= ηI1k(t) + ηI2k(t)− (δ + µ)Rk(t).

(17)

which leads to

Θ = f̂1(Θ)f̂2(Θ) ≡ f̂(Θ),

where

f̂1(Θ) =
1

⟨k⟩

∞∑
k=1

αkP (k)[pβ1 + (1− p)β2]

1− p
,

f̂2(Θ) =
kεb(1− p)(1− γk)Θ(µ+ δ)[ξ + µ+ k(1− γk)Θ]

ĝ(Θ)
,

where ĝ(Θ) = (b+µ)(η+µ)(δ+µ)(ξ+µ) + (b+µ)[ε(µ+ δ+ η)][k(1− γk)Θ]2 +
(b+µ)[(η+µ)(δ+µ)− (1−ε)qδη+ε(ξ+µ)(δ+µ+η)]k(1−γk)Θ. The epidemic
threshold is determined by the following inequality:

df̂(Θ)

dΘ
|Θ=0 =

αbε[pβ1 + (1− p)β2]

(b+ µ)(η + µ)

⟨k2⟩ − ⟨γkk2⟩
⟨k⟩

> 1.

Therefore, the epidemic threshold

Ř0 =
αbε[pβ1 + (1− p)β2]

(b+ µ)(η + µ)
· ⟨k

2⟩ − ⟨γkk2⟩
⟨k⟩

.

Note that

⟨γkk2⟩ = ⟨γk⟩ · ⟨k2⟩+ cov(γk, k
2)



454 Maoxing Liu and Yunli Zhang

= γ̄ · ⟨k2⟩+ ⟨(γk − ⟨γk⟩) · (k2 − ⟨k2⟩)⟩
= γ̄ · ⟨k2⟩+ ⟨(γk − γ̄) · (k2 − ⟨k2⟩)⟩.

For appropriate k, γk− γ̄ and k2−⟨k2⟩ have the same signs, except for some k′s
where γk = γ̄ and/or k2 = ⟨k2⟩, so cov(γk, k2) > 0. Obviously, we can get that
Ř0 < R0, which means the targeted immunization is effective. We can easily get
that Ř0 <

1−γ̄
1−γ R̂0. If we set 0 < γ̄ = γ < 1, then Ř0 < R̂0, which means the

targeted immunization strategy is more efficient than the proportional strategy
for the same average immunization rate. When Ř0 < 1, STDs can be controlled
by the targeted immunization.

Since the usage of condom p is the only controllable parameter in system (2),
so as the end of this section, we would like to discuss the effective condom using
rate to control SDTs spread on scale-free network for a given immunization rate
(i.e., γ or kt are given). Suppose R0 > 1. Let

p̃ =
(b+ µ)(η + µ)⟨k⟩ − β2αbε⟨k2⟩

αbε(β1 − β2)⟨k2⟩
,

p̂ =
(b+ µ)(η + µ)⟨k⟩ − αbεβ2(1− γ)⟨k2⟩

αbε(1− γ)(β1 − β2)⟨k2⟩
,

p̌ =
(b+ µ)(η + µ)⟨k⟩ − αbεβ2[⟨k2⟩ − ⟨γkk2⟩]

αbε(β1 − β2)[⟨k2⟩ − ⟨γkk2⟩]
.

When (1 − p) < p̃, which means that STDs can be controlled in the network
without immunization. When (1 − p) < p̂, which means that STDs can be
controlled in the network under proportional immunization with immunization
rate γ. When (1 − p) < p̌, which means that STDs can be controlled in the
network under targeted immunization with immunization rate γk.

5. Conclusion and Discussion

In this paper, a new model for the spread of the sexually transmitted diseases
on complex networks has been proposed. From a mathematical aspect, such
S1S2I1I2RS-type models on networks can be viewed as an multi-type SIRS
models if the networks possess the bounded degree property. Different from the
classical epidemic model, in the new model the susceptible individuals and the
infective individuals all divided into two subgroup. The thresholds of the STDs
model are determined. We also got the stability of disease-free equilibrium and
the persistence of STDs infection. At the same time, we have also discussed
proportional and targeted immunization strategies to the STDs model. By com-
paring the thresholds for different immunization schemes, we have concluded
that the targeted immunization strategy is more effective on the scale-free net-
works. We suggest to use target immunization scheme to decrease the spread
of STDs. The S1S2I1I2RS-type model can be used to analysis other epidemic
diseases.
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