References
- Abe, H., Shimoda, T., Ohnishi, J., Kugimiya, S., Narusaka, M., Seo, S., Narusaka, Y., Tsuda, S. and Kobayashi, M. 2009. Jasmonate- dependent plant defense restricts thrips performance and preference. BMC Plant Biol. 9:97. https://doi.org/10.1186/1471-2229-9-97
- Bouche, N. and Fromm, H. 2004. GABA in plants: just a metabolite- Trends Plant Sci. 9:110-115. https://doi.org/10.1016/j.tplants.2004.01.006
- Chen, P.-W., Singh, P. and Zimmerli, L. 2012. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14:58-70.
- Choi, K. O. and Hong, J. K. 2009. First report of anthracnose occurrence on sloumi by Colletotrichum gloeosporioides in Korea. Plant Pathol. J. 25:434. https://doi.org/10.5423/PPJ.2009.25.4.434
- Choi, O., Seo J., Kwon, J.-H. and Kim, J. 2011. Anthracnose caused by Colletotrichum gloeosporioides on sweet crabapple in Korea. Plant Pathol. J. 27:396. https://doi.org/10.5423/PPJ.2011.27.4.396
- Cohen, Y. 1994. 3-Aminobutyric acid induces systemic resistance against Peronospora tabacina. Physiol. Mol. Plant Pathol. 44:273-288. https://doi.org/10.1016/S0885-5765(05)80030-X
- Cohen, Y. and Gisi, U. 1994. Systemic translocation of 14C-DL-3- aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 45:441-456. https://doi.org/10.1016/S0885-5765(05)80041-4
-
Cohen, Y., Niderman, T., Mosinger, E. and Fluhr, R. 1994.
${\beta}$ - Aminobutyric acid induces the accumulation of pathogenesisrelated proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104:59-66. https://doi.org/10.1104/pp.104.1.59 -
Cohen, Y., Rubin, A. E. and Kilfin, G. 2010. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-
${\beta}$ -amino-butyric acid (BABA). Eur. J. Plant Pathol. 126:553-573. https://doi.org/10.1007/s10658-009-9564-6 - Dahlberg, K. R. and van Etten, J. L. 1982. Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopathol. 20:281-301. https://doi.org/10.1146/annurev.py.20.090182.001433
-
Eschen-Lippold, L., Altmann, S. and Rosahl, S. 2010. DL-
${\beta}$ -Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Mol. Plant-Microbe Interact. 23:585-592. https://doi.org/10.1094/MPMI-23-5-0585 - Fischer, M. J. C., Farine, S., Chong, J., Guerlain, P. and Bertsch, C. 2009. The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protect. 28:710-712. https://doi.org/10.1016/j.cropro.2009.03.014
- Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92.
- Friesrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivatives induces systemic acquired resistance in tobacco. Plant J. 10:61-70. https://doi.org/10.1046/j.1365-313X.1996.10010061.x
- Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D. and Pugin, A. 2006. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 7:711-724.
- Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengu, G., Beckhove, U., Kogel, K. H., Staub, M. T., Ward, E., Kessmann, H. and Ryals, J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates expression and disease resistance in wheat. Plant Cell 8:629-643. https://doi.org/10.1105/tpc.8.4.629
- Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757. https://doi.org/10.1016/S0960-9822(00)00560-1
-
Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M. and Mauch-Mani, B. 2005.
${\beta}$ -Amino-butyric acid-induced resistance against downy mildew in grapevine acts through the potentiate of callose formation and jasmonic acid signaling. Mol. Plant-Microbe Interact. 18:819-829. https://doi.org/10.1094/MPMI-18-0819 -
Hong, J. K., Hwang, B. K. and Kim, C. H. 1999. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-
${\beta}$ -amino-n-butyric acid. J. Phytopathol. 147:193-198. https://doi.org/10.1046/j.1439-0434.1999.147004193.x - Jackson, M. A. and Bothast, R. J. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56:3435-3438.
-
Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001.
${\beta}$ -Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29-37. https://doi.org/10.1023/A:1008730721037 - Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139:267-274. https://doi.org/10.1104/pp.105.065698
- Jeun, Y. C. and Park, E. W. 2003. Ultrastructures of the leaves of cucumber plants treated with DL-3-aminobutyric acid at the vascular bundle and the penetration sites after inoculation with Colletotrichum orbicularae. Plant Pathol. J. 19:85-91. https://doi.org/10.5423/PPJ.2003.19.2.085
-
Kamble, A. and Bhargava, S. 2007.
${\beta}$ -Aminobutyric acid-induced resistance in Brassica juncea against the necrotrophic pathogen Alternaria brassicae. J. Phytopathol. 155:152-158. https://doi.org/10.1111/j.1439-0434.2007.01209.x - Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, T., Koizumi, S. and Tsuge, T. 1997. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10:446-453. https://doi.org/10.1094/MPMI.1997.10.4.446
- Kawamura, C., Tsujimoto, T. and Tsuge, T. 1999. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol. Plant-Microbe Interact. 12:59-63. https://doi.org/10.1094/MPMI.1999.12.1.59
- Lin, C. C. and Kao, C. H. 2001. Abscisic acid changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 160:323-329. https://doi.org/10.1016/S0168-9452(00)00396-4
- Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S. and Lin, H. 2011. Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathol. J. 27:53-58. https://doi.org/10.5423/PPJ.2011.27.1.053
- Macko, V., Trione, E. J. and Young, S. A. 1977. Identification of the germination self-inhibitor from uredospores of Puccinia striiformis. Phytopathology 67:1473-1474.
- Mayer, A. M., Staples, R. C. and Gil-ad, N. L. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58: 33-41. https://doi.org/10.1016/S0031-9422(01)00187-X
- Migahed, F. F. and Nofel, A. M. 2001. Leaf exudates of Vicia faba and their effects on Botrytis fabae and some associated fungi. Mycobiology 24:198-204.
- Munch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N. and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165:41-51. https://doi.org/10.1016/j.jplph.2007.06.008
- Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15:474-497.
- Nakashima, K., Ito, Y. and Yamaguchi-Shinozaki, K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149:88-95. https://doi.org/10.1104/pp.108.129791
- Narusaka, Y., Narusaka, M., Park, P., Kubo, Y., Hirayama, T., Seki, M., Shiraishi, T., Ishida, J., Nakashima, M., Enju, A., Sakurai, T., Satou, M., Kobayashi, M. and Shinozaki, K. 2004. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol. Plant-Microbe Interact. 17:749-762. https://doi.org/10.1094/MPMI.2004.17.7.749
- Newton, E. J. 1977. Abscisic acid effects on fronds and roots of Lemna minor L. Amer. J. Bot. 64:45-49. https://doi.org/10.2307/2441874
- O'Connell, R. J., Uronu, A. B., Waksman, G., Nash, C., Keon, J. P. R. and Bailey, J. A. 1993. Hemibiotrophic infection of Pisum sativum by Colletotrichum truncatum. Plant Pathol. 42:774-783. https://doi.org/10.1111/j.1365-3059.1993.tb01564.x
- Olivieri, F. P., Lobato, M. C., Altamiranda, E. G., Daleo, G. R., Huarte, M., Guevara, M. G. and Andreu, A. B. 2009. BABA effects on the behavior of potato cultivars infected by Phytophthora infestans and Fusaium solani. Eur. J. Plant Pathol. 123:47-56. https://doi.org/10.1007/s10658-008-9340-z
- Osbourne, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831. https://doi.org/10.1105/tpc.8.10.1821
-
Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E. and Droby, S. 2003. Induction of resistance to Penicillium digitatum in grapefruit by
${\beta}$ -aminobutyric acid. Eur. J. Plant Pathol. 109:901-907. https://doi.org/10.1023/B:EJPP.0000003624.28975.45 - Pridham, J. B. and Woodhead, S. 1977. The biosynthesis of melanin in Alternaria. Phytochemistry 16:903-906. https://doi.org/10.1016/S0031-9422(00)86689-3
-
Reuveni, M., Sheglove, D. and Cohen, Y. 2003. Control of moldycore decay in apple fruits by
${\beta}$ -aminobutyric acids and potassium phosphites. Plant Dis. 87:933-936. https://doi.org/10.1094/PDIS.2003.87.8.933 - Ross, R. G. 1968. Amino acids as nitrogen sources for conidial production of Venturia inaequalis. Can. J. Bot. 46:1555-1560. https://doi.org/10.1139/b68-215
- Rotem, J., Cohen, Y. and Bashi, E. 1978. Host and environmental influences on sporulation in vivo. Annu. Rev. Phytopathol. 16:83-101. https://doi.org/10.1146/annurev.py.16.090178.000503
- Rowe, H. C., Walley, J. W., Corwin, J., Chan, E. K. F., Dehesh, K. and Kliebenstein, D. J. 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog. 6:e1000861. https://doi.org/10.1371/journal.ppat.1000861
-
Sasek, V., Novakova, M., Dobrev, P. I., Valentova and Burketova, L. 2012.
${\beta}$ -aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect- Eur. J. Plant Pathol. 133:279-289. https://doi.org/10.1007/s10658-011-9897-9 -
Shailasree, S., Sarosh, B. R., Vasanthi, N. S. and Shetty, H. S. 2001. Seed treatment with
${\beta}$ -aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Manag. Sci. 57:721-728. https://doi.org/10.1002/ps.346 -
Siegrist, J., Orober, M. and Buchenauer, H. 2000.
${\beta}$ -Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol. 56:95-106. https://doi.org/10.1006/pmpp.1999.0255 - Smith, J. L., de Moraes, C. M. and Mescher, M. C. 2009. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci. 65:497-503. https://doi.org/10.1002/ps.1714
- Solomon, P. S. and Oliver, R. P. 2001. The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213:241-249. https://doi.org/10.1007/s004250000500
-
Solomon, P. S. and Oliver, R. P. 2002. Evidence that
${\gamma}$ -aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214:414-420. https://doi.org/10.1007/s004250100632 -
Tavallali, V., Karimi, S., Mohammadi, S. and Hojati, S. 2008. Effects of
${\beta}$ -aminobutyric acid on the induction of resistance to Penicillium italicum. World Appl. Sci. J. 5:345-351. - Thanh, N. V., Rombouts, F. M. and Nout, M. J. R. 2005. Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter. J. Appl. Microbiol. 99:1204-1214. https://doi.org/10.1111/j.1365-2672.2005.02692.x
- The Brassica rapa Genome Sequencing Consortium 2011. The genome of the mesopolyploid crop species Brassica rapa. Nature Genet. 43:1035-1039. https://doi.org/10.1038/ng.919
- Thomma, B. P. H. J. 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4:225-236. https://doi.org/10.1046/j.1364-3703.2003.00173.x
-
Ton, J. and Mauch-Mani, B. 2004.
${\beta}$ -Amino-butyric acid-induced resistance against necrotrophic pathogen is based on ABAdependent priming for callose. Plant J. 38:119-130. https://doi.org/10.1111/j.1365-313X.2004.02028.x - Tsurushima, T., Ueno, T., Fukami, H., Irie, H. and Inoue, M. 1995. Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Mol. Plant-Microbe Interact. 8:652-657. https://doi.org/10.1094/MPMI-8-0652
- Tuteja, N. 2007. Abscisic acid and abiotic stress signaling. Plant Sig. Behav. 2:135-138. https://doi.org/10.4161/psb.2.3.4156
- van Loon, L. C., Rep, M. and Pierterse, C. M. J. 2006. Significance of inducible defense related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
- van Wees, S. C. M., Van der Ent, S. and Pieterse, C. M. J. 2008. Plant immunity responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-448. https://doi.org/10.1016/j.pbi.2008.05.005
- Vlot, A. C., Dempsey, D. M. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
-
Walz, A. and Simon, O. 2009.
${\beta}$ -Amino-butyric acid-induced resistance in cucumber against biotrophic and necrotrophic pathogens. J. Phytopathol. 157:356-361. https://doi.org/10.1111/j.1439-0434.2008.01502.x - Wu, C. C., Singh, P., Chen, M. C. and Zimmerli, L. 2010. LGlutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 61: 995-1002. https://doi.org/10.1093/jxb/erp363
- Zeevaart, J. A. D. and Creelman, R. A. 1998. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439-473.
- Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H. and Xie, Q. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912-1929. https://doi.org/10.1105/tpc.106.048488
-
Zimmerli, L., Hou, B. H., Tsai, C. H., Jakab, G., Mauch-Mani, B. and Somerville, S. 2008. The xenobiotic
${\beta}$ -aminobutyric acid enhances Arabidopsis thermotolerance. Plant J. 53:144-156. https://doi.org/10.1111/j.1365-313X.2007.03343.x -
Zimmerli, L., Jakab, G., Metraux, J. P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by
${\beta}$ -aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920-12925. https://doi.org/10.1073/pnas.230416897
Cited by
- BABA-induced resistance: milestones along a 55-year journey vol.44, pp.4, 2016, https://doi.org/10.1007/s12600-016-0546-x
- Phosphorus levels determine changes in growth and biochemical composition of Chlorella vulgaris during cadmium stress vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1111-9
- Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.03.2016.0076
- Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases vol.64, pp.2, 2015, https://doi.org/10.1111/ppa.12262