DOI QR코드

DOI QR Code

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Yeon Hwa (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Lee, Sang Woo (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Chae, Yun-Soek (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kang, Hyun-Kyung (Department of Environmental Landscape Architecture, Sangmyung University) ;
  • Yun, Byung-Wook (Division of Plant Biosciences, School of Applied Biosciences, Kyungpook National University) ;
  • Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
  • Received : 2012.12.24
  • Accepted : 2013.03.29
  • Published : 2013.09.01

Abstract

Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

Keywords

References

  1. Abe, H., Shimoda, T., Ohnishi, J., Kugimiya, S., Narusaka, M., Seo, S., Narusaka, Y., Tsuda, S. and Kobayashi, M. 2009. Jasmonate- dependent plant defense restricts thrips performance and preference. BMC Plant Biol. 9:97. https://doi.org/10.1186/1471-2229-9-97
  2. Bouche, N. and Fromm, H. 2004. GABA in plants: just a metabolite- Trends Plant Sci. 9:110-115. https://doi.org/10.1016/j.tplants.2004.01.006
  3. Chen, P.-W., Singh, P. and Zimmerli, L. 2012. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14:58-70.
  4. Choi, K. O. and Hong, J. K. 2009. First report of anthracnose occurrence on sloumi by Colletotrichum gloeosporioides in Korea. Plant Pathol. J. 25:434. https://doi.org/10.5423/PPJ.2009.25.4.434
  5. Choi, O., Seo J., Kwon, J.-H. and Kim, J. 2011. Anthracnose caused by Colletotrichum gloeosporioides on sweet crabapple in Korea. Plant Pathol. J. 27:396. https://doi.org/10.5423/PPJ.2011.27.4.396
  6. Cohen, Y. 1994. 3-Aminobutyric acid induces systemic resistance against Peronospora tabacina. Physiol. Mol. Plant Pathol. 44:273-288. https://doi.org/10.1016/S0885-5765(05)80030-X
  7. Cohen, Y. and Gisi, U. 1994. Systemic translocation of 14C-DL-3- aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 45:441-456. https://doi.org/10.1016/S0885-5765(05)80041-4
  8. Cohen, Y., Niderman, T., Mosinger, E. and Fluhr, R. 1994. ${\beta}$- Aminobutyric acid induces the accumulation of pathogenesisrelated proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104:59-66. https://doi.org/10.1104/pp.104.1.59
  9. Cohen, Y., Rubin, A. E. and Kilfin, G. 2010. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-${\beta}$-amino-butyric acid (BABA). Eur. J. Plant Pathol. 126:553-573. https://doi.org/10.1007/s10658-009-9564-6
  10. Dahlberg, K. R. and van Etten, J. L. 1982. Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopathol. 20:281-301. https://doi.org/10.1146/annurev.py.20.090182.001433
  11. Eschen-Lippold, L., Altmann, S. and Rosahl, S. 2010. DL-${\beta}$-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Mol. Plant-Microbe Interact. 23:585-592. https://doi.org/10.1094/MPMI-23-5-0585
  12. Fischer, M. J. C., Farine, S., Chong, J., Guerlain, P. and Bertsch, C. 2009. The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protect. 28:710-712. https://doi.org/10.1016/j.cropro.2009.03.014
  13. Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92.
  14. Friesrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivatives induces systemic acquired resistance in tobacco. Plant J. 10:61-70. https://doi.org/10.1046/j.1365-313X.1996.10010061.x
  15. Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D. and Pugin, A. 2006. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 7:711-724.
  16. Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengu, G., Beckhove, U., Kogel, K. H., Staub, M. T., Ward, E., Kessmann, H. and Ryals, J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates expression and disease resistance in wheat. Plant Cell 8:629-643. https://doi.org/10.1105/tpc.8.4.629
  17. Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757. https://doi.org/10.1016/S0960-9822(00)00560-1
  18. Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M. and Mauch-Mani, B. 2005. ${\beta}$-Amino-butyric acid-induced resistance against downy mildew in grapevine acts through the potentiate of callose formation and jasmonic acid signaling. Mol. Plant-Microbe Interact. 18:819-829. https://doi.org/10.1094/MPMI-18-0819
  19. Hong, J. K., Hwang, B. K. and Kim, C. H. 1999. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-${\beta}$-amino-n-butyric acid. J. Phytopathol. 147:193-198. https://doi.org/10.1046/j.1439-0434.1999.147004193.x
  20. Jackson, M. A. and Bothast, R. J. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56:3435-3438.
  21. Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. ${\beta}$-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29-37. https://doi.org/10.1023/A:1008730721037
  22. Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139:267-274. https://doi.org/10.1104/pp.105.065698
  23. Jeun, Y. C. and Park, E. W. 2003. Ultrastructures of the leaves of cucumber plants treated with DL-3-aminobutyric acid at the vascular bundle and the penetration sites after inoculation with Colletotrichum orbicularae. Plant Pathol. J. 19:85-91. https://doi.org/10.5423/PPJ.2003.19.2.085
  24. Kamble, A. and Bhargava, S. 2007. ${\beta}$-Aminobutyric acid-induced resistance in Brassica juncea against the necrotrophic pathogen Alternaria brassicae. J. Phytopathol. 155:152-158. https://doi.org/10.1111/j.1439-0434.2007.01209.x
  25. Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, T., Koizumi, S. and Tsuge, T. 1997. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10:446-453. https://doi.org/10.1094/MPMI.1997.10.4.446
  26. Kawamura, C., Tsujimoto, T. and Tsuge, T. 1999. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol. Plant-Microbe Interact. 12:59-63. https://doi.org/10.1094/MPMI.1999.12.1.59
  27. Lin, C. C. and Kao, C. H. 2001. Abscisic acid changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 160:323-329. https://doi.org/10.1016/S0168-9452(00)00396-4
  28. Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S. and Lin, H. 2011. Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathol. J. 27:53-58. https://doi.org/10.5423/PPJ.2011.27.1.053
  29. Macko, V., Trione, E. J. and Young, S. A. 1977. Identification of the germination self-inhibitor from uredospores of Puccinia striiformis. Phytopathology 67:1473-1474.
  30. Mayer, A. M., Staples, R. C. and Gil-ad, N. L. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58: 33-41. https://doi.org/10.1016/S0031-9422(01)00187-X
  31. Migahed, F. F. and Nofel, A. M. 2001. Leaf exudates of Vicia faba and their effects on Botrytis fabae and some associated fungi. Mycobiology 24:198-204.
  32. Munch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N. and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165:41-51. https://doi.org/10.1016/j.jplph.2007.06.008
  33. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15:474-497.
  34. Nakashima, K., Ito, Y. and Yamaguchi-Shinozaki, K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149:88-95. https://doi.org/10.1104/pp.108.129791
  35. Narusaka, Y., Narusaka, M., Park, P., Kubo, Y., Hirayama, T., Seki, M., Shiraishi, T., Ishida, J., Nakashima, M., Enju, A., Sakurai, T., Satou, M., Kobayashi, M. and Shinozaki, K. 2004. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol. Plant-Microbe Interact. 17:749-762. https://doi.org/10.1094/MPMI.2004.17.7.749
  36. Newton, E. J. 1977. Abscisic acid effects on fronds and roots of Lemna minor L. Amer. J. Bot. 64:45-49. https://doi.org/10.2307/2441874
  37. O'Connell, R. J., Uronu, A. B., Waksman, G., Nash, C., Keon, J. P. R. and Bailey, J. A. 1993. Hemibiotrophic infection of Pisum sativum by Colletotrichum truncatum. Plant Pathol. 42:774-783. https://doi.org/10.1111/j.1365-3059.1993.tb01564.x
  38. Olivieri, F. P., Lobato, M. C., Altamiranda, E. G., Daleo, G. R., Huarte, M., Guevara, M. G. and Andreu, A. B. 2009. BABA effects on the behavior of potato cultivars infected by Phytophthora infestans and Fusaium solani. Eur. J. Plant Pathol. 123:47-56. https://doi.org/10.1007/s10658-008-9340-z
  39. Osbourne, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831. https://doi.org/10.1105/tpc.8.10.1821
  40. Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E. and Droby, S. 2003. Induction of resistance to Penicillium digitatum in grapefruit by ${\beta}$-aminobutyric acid. Eur. J. Plant Pathol. 109:901-907. https://doi.org/10.1023/B:EJPP.0000003624.28975.45
  41. Pridham, J. B. and Woodhead, S. 1977. The biosynthesis of melanin in Alternaria. Phytochemistry 16:903-906. https://doi.org/10.1016/S0031-9422(00)86689-3
  42. Reuveni, M., Sheglove, D. and Cohen, Y. 2003. Control of moldycore decay in apple fruits by ${\beta}$-aminobutyric acids and potassium phosphites. Plant Dis. 87:933-936. https://doi.org/10.1094/PDIS.2003.87.8.933
  43. Ross, R. G. 1968. Amino acids as nitrogen sources for conidial production of Venturia inaequalis. Can. J. Bot. 46:1555-1560. https://doi.org/10.1139/b68-215
  44. Rotem, J., Cohen, Y. and Bashi, E. 1978. Host and environmental influences on sporulation in vivo. Annu. Rev. Phytopathol. 16:83-101. https://doi.org/10.1146/annurev.py.16.090178.000503
  45. Rowe, H. C., Walley, J. W., Corwin, J., Chan, E. K. F., Dehesh, K. and Kliebenstein, D. J. 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog. 6:e1000861. https://doi.org/10.1371/journal.ppat.1000861
  46. Sasek, V., Novakova, M., Dobrev, P. I., Valentova and Burketova, L. 2012. ${\beta}$-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect- Eur. J. Plant Pathol. 133:279-289. https://doi.org/10.1007/s10658-011-9897-9
  47. Shailasree, S., Sarosh, B. R., Vasanthi, N. S. and Shetty, H. S. 2001. Seed treatment with ${\beta}$-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Manag. Sci. 57:721-728. https://doi.org/10.1002/ps.346
  48. Siegrist, J., Orober, M. and Buchenauer, H. 2000. ${\beta}$-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol. 56:95-106. https://doi.org/10.1006/pmpp.1999.0255
  49. Smith, J. L., de Moraes, C. M. and Mescher, M. C. 2009. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci. 65:497-503. https://doi.org/10.1002/ps.1714
  50. Solomon, P. S. and Oliver, R. P. 2001. The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213:241-249. https://doi.org/10.1007/s004250000500
  51. Solomon, P. S. and Oliver, R. P. 2002. Evidence that ${\gamma}$-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214:414-420. https://doi.org/10.1007/s004250100632
  52. Tavallali, V., Karimi, S., Mohammadi, S. and Hojati, S. 2008. Effects of ${\beta}$-aminobutyric acid on the induction of resistance to Penicillium italicum. World Appl. Sci. J. 5:345-351.
  53. Thanh, N. V., Rombouts, F. M. and Nout, M. J. R. 2005. Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter. J. Appl. Microbiol. 99:1204-1214. https://doi.org/10.1111/j.1365-2672.2005.02692.x
  54. The Brassica rapa Genome Sequencing Consortium 2011. The genome of the mesopolyploid crop species Brassica rapa. Nature Genet. 43:1035-1039. https://doi.org/10.1038/ng.919
  55. Thomma, B. P. H. J. 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4:225-236. https://doi.org/10.1046/j.1364-3703.2003.00173.x
  56. Ton, J. and Mauch-Mani, B. 2004. ${\beta}$-Amino-butyric acid-induced resistance against necrotrophic pathogen is based on ABAdependent priming for callose. Plant J. 38:119-130. https://doi.org/10.1111/j.1365-313X.2004.02028.x
  57. Tsurushima, T., Ueno, T., Fukami, H., Irie, H. and Inoue, M. 1995. Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Mol. Plant-Microbe Interact. 8:652-657. https://doi.org/10.1094/MPMI-8-0652
  58. Tuteja, N. 2007. Abscisic acid and abiotic stress signaling. Plant Sig. Behav. 2:135-138. https://doi.org/10.4161/psb.2.3.4156
  59. van Loon, L. C., Rep, M. and Pierterse, C. M. J. 2006. Significance of inducible defense related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  60. van Wees, S. C. M., Van der Ent, S. and Pieterse, C. M. J. 2008. Plant immunity responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-448. https://doi.org/10.1016/j.pbi.2008.05.005
  61. Vlot, A. C., Dempsey, D. M. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
  62. Walz, A. and Simon, O. 2009. ${\beta}$-Amino-butyric acid-induced resistance in cucumber against biotrophic and necrotrophic pathogens. J. Phytopathol. 157:356-361. https://doi.org/10.1111/j.1439-0434.2008.01502.x
  63. Wu, C. C., Singh, P., Chen, M. C. and Zimmerli, L. 2010. LGlutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 61: 995-1002. https://doi.org/10.1093/jxb/erp363
  64. Zeevaart, J. A. D. and Creelman, R. A. 1998. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439-473.
  65. Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H. and Xie, Q. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912-1929. https://doi.org/10.1105/tpc.106.048488
  66. Zimmerli, L., Hou, B. H., Tsai, C. H., Jakab, G., Mauch-Mani, B. and Somerville, S. 2008. The xenobiotic ${\beta}$-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J. 53:144-156. https://doi.org/10.1111/j.1365-313X.2007.03343.x
  67. Zimmerli, L., Jakab, G., Metraux, J. P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by ${\beta}$-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920-12925. https://doi.org/10.1073/pnas.230416897

Cited by

  1. BABA-induced resistance: milestones along a 55-year journey vol.44, pp.4, 2016, https://doi.org/10.1007/s12600-016-0546-x
  2. Phosphorus levels determine changes in growth and biochemical composition of Chlorella vulgaris during cadmium stress vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1111-9
  3. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.03.2016.0076
  4. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases vol.64, pp.2, 2015, https://doi.org/10.1111/ppa.12262