DOI QR코드

DOI QR Code

An Expedient Synthesis of Oxindole Dimers by Direct Oxidative Dimerization of Oxindoles

  • Lee, Hyun Ju (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Sangku (Immune Modulator Research Center, KRIBB) ;
  • Lim, Jin Woo (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2013.04.24
  • Accepted : 2013.05.22
  • Published : 2013.08.20

Abstract

Oxindole dimers have been used as intermediates in the synthesis of various cyclotryptamine alkaloids. An efficient direct synthesis of oxindole dimers has been carried out from 3-substituted oxindoles via an oxidative dimerization using manganese(III) acetate or copper acetate/silver acetate system.

Keywords

References

  1. Guo, C.; Song, J.; Huang, J.-Z.; Chen, P.-H.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51, 1046-1050. https://doi.org/10.1002/anie.201107079
  2. Mitsunuma, H.; Shibasaki, M.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2012, 51, 5217-5221. https://doi.org/10.1002/anie.201201132
  3. Overman, L. E.; Peterson, E. A. Angew. Chem. Int. Ed. 2003, 42, 2525-2528. https://doi.org/10.1002/anie.200351260
  4. Overman, L. E.; Paone, D. V.; Stearns, B. A. J. Am. Chem. Soc. 1999, 121, 7702-7703. https://doi.org/10.1021/ja991714g
  5. Link, J. T.; Overman, L. E. J. Am. Chem. Soc. 1996, 118, 8166-8167. https://doi.org/10.1021/ja961757m
  6. Fang, C.-L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem. Soc. 1994, 116, 9480-9486. https://doi.org/10.1021/ja00100a010
  7. Inada, A.; Morita, Y. Heterocycles 1982, 19, 2139-2142. https://doi.org/10.3987/R-1982-11-2139
  8. Ellis, J. M.; Overman, L. E.; Tanner, H. R.; Wang, J. J. Org. Chem. 2008, 73, 9151-9154. https://doi.org/10.1021/jo801867w
  9. Ghosh, S.; De, S.; Kakde, B. N.; Bhunia, S.; Adhikary, A.; Bisai, A. Org. Lett. 2012, 14, 5864-5867. https://doi.org/10.1021/ol302767w
  10. Kukosha, T.; Trufilkina, N.; Katkevics, M. Synlett 2011, 2525-2528.
  11. Munusamy, R.; Dhathathreyan, K. S.; Balasubramanian, K. K.; Venkatachalam, C. S. J. Chem. Soc., Perkin Trans. 2 2001, 1154-1166.
  12. Overman, L. E.; Larrow, J. F.; Stearns, B. A.; Vance, J. M. Angew. Chem. Int. Ed. 2000, 39, 213-215. https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<213::AID-ANIE213>3.0.CO;2-Z
  13. Lee, H. J.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2013, 54, 170-175. https://doi.org/10.1016/j.tetlet.2012.10.122
  14. Shang, Y.; Jie, X.; Zhou, J.; Hu, P.; Huang, S.; Su, W. Angew. Chem. Int. Ed. 2013, 52, 1299-1303. https://doi.org/10.1002/anie.201208627
  15. Moon, Y.; Kwon, D.; Hong, S. Angew. Chem. Int. Ed. 2012, 51, 11333-11336. https://doi.org/10.1002/anie.201206610
  16. Diao, T.; Wadzinski, T. J.; Stahl, S. S. Chem. Sci. 2012, 3, 887-891. https://doi.org/10.1039/c1sc00724f
  17. Izawa, Y.; Pun, D.; Stahl, S. S. Science 2011, 333, 209-213. https://doi.org/10.1126/science.1204183
  18. Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566-14569. https://doi.org/10.1021/ja206575j
  19. Tokunaga, M.; Harada, S.; Iwasawa, T.; Obora, Y.; Tsuji, Y. Tetrahedron Lett. 2007, 48, 6860-6862. https://doi.org/10.1016/j.tetlet.2007.07.181
  20. Kozlowski, M. C.; DiVirgilio, E. S.; Malolanarasimhan, K.; Mulrooney, C. A. Tetrahedron: Asymmetry 2005, 16, 3599-3605. https://doi.org/10.1016/j.tetasy.2005.10.008
  21. Lee, D. J.; Kim, K.; Park, Y. J. Org. Lett. 2002, 4, 873-876. https://doi.org/10.1021/ol016995n
  22. Do, H.-Q.; Tran-Vu, H.; Daugulis, O. Organometallics 2012, 31, 7816-7818. https://doi.org/10.1021/om300393m
  23. de Jongh, H. A. P.; de Jonge, C. R. H. I.; Mijs, W. J. J. Org. Chem. 1971, 36, 3160-3168. https://doi.org/10.1021/jo00820a019
  24. de Jongh, H. A. P.; de Jonge, C. R. H. I.; Sinnige, H. J. M.; de Klein, W. J.; Huysmans, W. G. B.; Mijs, W. J.; van den Hoek, W. J.; Smidt, J. J. Org. Chem. 1972, 37, 1960-1966. https://doi.org/10.1021/jo00977a021
  25. Snider, B. B.; Smith, R. B. Tetrahedron 2002, 58, 25-34. https://doi.org/10.1016/S0040-4020(01)01054-7
  26. Snider, B. B.; Patricia, J. J.; Kates, S. A. J. Org. Chem. 1988, 53, 2137-2143. https://doi.org/10.1021/jo00245a001
  27. Snider, B. B.; Vo, N. H.; Foxman, B. M. J. Org. Chem. 1993, 58, 7228-7237. https://doi.org/10.1021/jo00077a054
  28. Citterio, A.; Santi, R.; Fiorani, T.; Strologo, S. J. Org. Chem. 1989, 54, 2703-2712. https://doi.org/10.1021/jo00272a046
  29. Nguyen, V.-H.; Nishino, H. Tetrahedron Lett. 2004, 45, 3373-3377. https://doi.org/10.1016/j.tetlet.2004.03.019
  30. Du, Y.; Zhang, Y.; Wang, S.; Zhao, K. Synlett 2009, 1835-1841.
  31. Periasamy, M.; Ramani, G.; Muthukumaragopal, G. P. Synthesis 2009, 1739-1743.
  32. Matsumura, Y.; Nishimura, M.; Hiu, H.; Watanabe, M.; Kise, N. J. Org. Chem. 1996, 61, 2809-2812. https://doi.org/10.1021/jo952204h
  33. Frenette, M.; Aliaga, C.; Font-Sanchis, E.; Scaiano, J. C. Org. Lett. 2004, 6, 2579-2582. https://doi.org/10.1021/ol049111j
  34. Cho, L. Y.; Romero, J. R. Tetrahedron Lett. 1995, 36, 8757-8760. https://doi.org/10.1016/0040-4039(95)01921-4
  35. Galzerano, P.; Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.; Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P. Chem. Eur. J. 2009, 15, 7846-7849. https://doi.org/10.1002/chem.200802466
  36. Ishikura, M.; Takahashi, N.; Yamada, K.; Yanada, R. Tetrahedron 2006, 62, 11580-11591. https://doi.org/10.1016/j.tet.2006.09.065
  37. Cao, S.-H.; Zhang, X.-C.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 2668-2672.
  38. Kobayashi, G.; Furukawa, S. Chem. Pharm. Bull. 1964, 12, 1129-1135. https://doi.org/10.1248/cpb.12.1129
  39. Grigg, R.; Whitney, S.; Sridharan, V.; Keep, A.; Derrick, A. Tetrahedron 2009, 65, 4375-4383. https://doi.org/10.1016/j.tet.2009.03.065
  40. Lopez-Alvarado, P.; Avendano, C. Synthesis 2002, 104-110.
  41. Albertshofer, K.; Tan, B.; Barbas, C. F., III. Org. Lett. 2012, 14, 1834-1837. https://doi.org/10.1021/ol300441z
  42. Shimazawa, R.; Kuriyama, M.; Shirai, R. Bioorg. Med. Chem. Lett. 2008, 18, 3350-3353. https://doi.org/10.1016/j.bmcl.2008.04.027
  43. Buckley, B. R.; Fernandez, D.-R. B. Tetrahedron Lett. 2013, 54, 843-846. https://doi.org/10.1016/j.tetlet.2012.11.083
  44. Liu, Y.; Zhang, L.; Jia, Y. Tetrahedron Lett. 2012, 53, 684-687. https://doi.org/10.1016/j.tetlet.2011.11.118

Cited by

  1. Copper catalyzed sequential arylation−oxidative dimerization of o-haloanilides: synthesis of dimeric HPI alkaloids vol.51, pp.80, 2015, https://doi.org/10.1039/C5CC05378A
  2. Total Synthesis of Dimeric HPI Alkaloids vol.6, pp.2, 2016, https://doi.org/10.1007/s13659-016-0092-8
  3. Acridinium Betaine as a Single-Electron-Transfer Catalyst: Design and Application to Dimerization of Oxindoles vol.7, pp.4, 2017, https://doi.org/10.1021/acscatal.7b00265
  4. ChemInform Abstract: An Expedient Synthesis of Oxindole Dimers by Direct Oxidative Dimerization of Oxindoles vol.44, pp.52, 2013, https://doi.org/10.1002/chin.201352109
  5. Palladium-Catalyzed Chemoselective Activation of sp3 vs sp2 C-H Bonds: Oxidative Coupling To Form Quaternary Centers vol.9, pp.4, 2013, https://doi.org/10.1021/acscatal.9b00091
  6. Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'-Bioxindoles : Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'-Bioxindoles vol.2020, pp.20, 2020, https://doi.org/10.1002/ejoc.202000375
  7. Cross-Dehydrogenative Cyclization-Dimerization Cascade Sequence for the Synthesis of Symmetrical 3,3′-Bisoxindoles vol.23, pp.14, 2013, https://doi.org/10.1021/acs.orglett.1c01799