• Title/Summary/Keyword: Manganese(III) acetate

Search Result 7, Processing Time 0.021 seconds

An Expedient Synthesis of Oxindole Dimers by Direct Oxidative Dimerization of Oxindoles

  • Lee, Hyun Ju;Lee, Sangku;Lim, Jin Woo;Kim, Jae Nyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2446-2450
    • /
    • 2013
  • Oxindole dimers have been used as intermediates in the synthesis of various cyclotryptamine alkaloids. An efficient direct synthesis of oxindole dimers has been carried out from 3-substituted oxindoles via an oxidative dimerization using manganese(III) acetate or copper acetate/silver acetate system.

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.

Effects of Different Precursors on the Surface Mn Species Over $MnO_x/TiO_2$ for Low-temperature SCR of NOx with $NH_3$

  • Kim, Jang-Hoon;Yoon, Sang-Hyun;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The selective catalytic reduction (SCR) of $MnO_x$ with $NH_3$ is an effective method for the removal of $MnO_x$ from stationary system. The typical catalyst for this method is $V_2O_5-WO_3(MoO_3)/TiO_2$, caused by the high activity and stability. However, This catalyst is active within $300{\sim}400^{\circ}C$ and occurs the pore plugging from the deposition of ammonium sulfate salts on the catalysts surface. It needs to locate the SCR unit after the desulfurizer and electrostatic precipitator without reheating of the flue gas as well as deposition of dust on the catalyst. The manganese oxides supported on titania catalysts have attracted interest because of its high SCR activity at low temperature. The catalytic activity of $MnO_x/TiO_2$ SCR catalyst with different manganese precursors have investigated for low-temperature SCR in terms of structural, morphological, and physico-chemical analyses. The $MnO_x/TiO_2$ were prepared from three different precursors such as manganese nitrate, manganese acetate (II), and manganese acetate (III) by the sol-gel method and then it calcinated at $500^{\circ}C$ for 2 hr. The structural analysis was carried out to identify the phase transition and the change intensity of catalytic activity by various manganese precursors was analyzed by FT-IR and Raman spectroscopy. These different precursors also led to various surface Mn concentrations indicated by SEM. The Mn acetate (III) tends to be more suppressive the crystalline phase (rutile), and it has not only smaller particle size, but also better distributed than the others. It was confirmed that the catalytic activity of MA (III)-$MnO_x/TiO_2$ was the highest among them.

  • PDF

Highly Selective Triiodide Polymeric Membrane Electrode Based on Tetra(p-chlorophenyl)porphyrinato Manganese (Ⅲ) Acetate

  • Farhadi, Khalil;Shaikhlouei, Hossain;Maleki, Ramin;Sharghi, Hashem;Shamsipur, Mojtaba
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1635-1639
    • /
    • 2002
  • A new solvent polymeric membrane sensor based on tetra(p-chlorophenyl)porphyrinato manganese (III) acetate is described which demonstrates excellent selectivity toward the triiodide ion. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ M and 7.0 ${\times}$$10^{-6}$M with a Nernstian slope of $-59.6{\pm}1$ mV per decade and a detection limit of 5.0 ${\times}$$10^{-6}$M. The proposed sensor revealed good selectivities for triiodide over a wide variety of other anions and could be used in a pH range 2-9. The electrode can be used for at least two months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of the triiodide and As(III) ions.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

Synthesis, Structure and Magnetic Properties of Mn12 Single Molecule Magnet Containing 4-(Methylthio)benzoate as Peripheral Ligands

  • Lim, Jin-Mook;Do, Young-Kyu;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1065-1070
    • /
    • 2005
  • $[Mn_{12}O_{12}(O_2CPh-4-SMe)_{16}(H_2O)_4]{\cdot}7CH_2Cl_2$ (1), a new single-molecule magnet complex has been successfully synthesized by substitution of acetate ligand of Mn12ac with 4-(methylthio)benzoic acid. Complex 1 crystallizes into triclinic P$\overline{1}$ with a = 18.321(3) $\AA$, b = 19.011(3) $\AA$, c = 27.230(4) $\AA$, $\alpha$ = 86.973(3)$^{\circ}$, $\beta$ = 76.919(3)$^{\circ}$, $\gamma$ = 87.613(3)$^{\circ}$, and Z = 2. In complex 1, one Mn(III) ion has an abnormal Jahn-Teller elongation axis oriented at an oxide ion. Complex 1 has two out-of-phase ac susceptibility peaks in the 2-4 K and 4-7 K regions. Effective anisotropy energy barrier and pre-exponential factor are $U_{eff}$ = 45.95 K, 1/$\tau$0 = 8.6 ${\times}\;10^9s^{-1}\;for\;{\chi}_M$'' peaks in the lower temperature region and $U_{eff}$ = 59.45 K, 1/$\tau_0$ = 2.2 ${\times}\;10^8\;s^{-1}$ for $\chi_M$'' peaks in the higher temperature region. The parameters of S = 10, g = 1.87, D = -0.40 $cm^{-1}$, and E = 0.00034 $cm^{-1}$ were obtained from the M/N${\mu}_B$ vs. H/T plot of complex 1.