DOI QR코드

DOI QR Code

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Bae, Ae Ri (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • 투고 : 2013.05.02
  • 심사 : 2013.05.07
  • 발행 : 2013.08.20

초록

Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

키워드

참고문헌

  1. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapt. 7.
  2. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; Chapt. 8.5.
  3. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw Hill: New York, 1969; Chapt. 10.
  4. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  5. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  6. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  7. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  8. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  9. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  10. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  11. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1039/b500251f
  12. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567. https://doi.org/10.2174/1385272043370753
  13. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  14. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  15. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. https://doi.org/10.1039/b006974o
  16. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306-2310.
  17. Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708-714. https://doi.org/10.1002/kin.20605
  18. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  19. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  20. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  21. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  22. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  23. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  24. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. https://doi.org/10.1021/jo00219a029
  25. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  26. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  27. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  28. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. https://doi.org/10.1021/jo049260f
  29. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  30. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  31. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  32. Um, I. H.; Bea, A. R. J. Org. Chem. 2012, 77, 5781-5787. https://doi.org/10.1021/jo300961y
  33. Um, I. H.; Bea, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  34. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  35. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. https://doi.org/10.1021/jo0705061
  36. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  37. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  38. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  39. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  40. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  41. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  42. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  43. Um, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  44. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  45. Bae, A. R.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1547-1550. https://doi.org/10.5012/bkcs.2012.33.5.1547
  46. Kang, J. S.; Lee, J. I.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1551-1555. https://doi.org/10.5012/bkcs.2012.33.5.1551
  47. Kim, M. Y.; Lee, J. I.; Um, I. H. Bull. Korean Chem. Soc. 2013, 34, 1115-1119. https://doi.org/10.5012/bkcs.2013.34.4.1115
  48. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159
  49. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; pp 153-157.
  50. Issacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman Scientific and Technical: Singapore, 1995; pp 152-153.
  51. Kim, S.; Yi, K. Y. Tetrahedron Lett. 1985, 26, 1661-1664. https://doi.org/10.1016/S0040-4039(00)98578-2

피인용 문헌

  1. Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2081